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NON~ZERO-SUM TWO-PERSON REPEATED GAMES
WITH INCOMPLETE INFORMATION #

by

Sergiu Hart ##

1. Introduction

An incomplete information environment is one where at least

some of the participants do not possess all the relevant data. Much
interest has been devoted in recent years to the analysis of such
situations. In the economic theory literature, for example: the
principal-agent problem; the theory of auctions; signalling (e.g., in

insurance markets); rational expectations equilibria; and so on.

What are the main difficulties in such problems? First, consider
the "informed" persons--those who know more than others. On one hand,
it is to their advantage to make use of their additional information

(in o;der to improve their own final outcome). On the other hand, by

doing so they actually reveal this informastion--and their relative
advantage vanishes., Thus--what is the good of being more informed, if
one cannot profit from it? This type of conflict is an essential issue

in the analysis of incomplete information environments.

1\
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As an idealized example, assume someone has "inside information"

that a certain small company has just succeeded in developing a new

ST R
2 R

product, for which a very profitable market exists. He thus expects

E! that the value of the shares of this company in the Stock Exchange
. will raise dramatically. Should he immediately buy a large quantity
; of these shares? By doing so, he will implicitly signal to the others
k. the success of the company--and everyone will want to buy its shares,
A
raising their value immediately and lowering the profits of the initially
informed person. The answer clearly lies in him buying the "right"
ﬁi quantity of shares--not too large to draw attention, and not too small
to make his profit insignificant.

The results of the analysis of such models of incomplete infor-
F mation usually indicate that some transmission of information does occur
igf (possibly, in an implicit way only; namely, deducing information from
\ actions taken by those possessing it). Thus, there is need for communi-
ri cations, and some sort of cooperation may arise (e.g., "trading
- information")~-even though everything is based on purely selfish

(non-cooperative) motives.

P There is yet another conflict--this time, for the "uninformed"
participants. Should they trust the information transmitted by the
informed ones? In the Stock Exchange example--maybe the purpose of
] buying a large quantity of shares is Just to convince everyone that a
technological breakthrough indeed occurred, leading to & big bdbuying

activity, which may finally meke a good profit for the one that started
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it all. This, also in case no new product has been at all developed by
the company!
Game theory is a tool for studying conflict situations-~by

definition, inter-personal conflicts. However, one obtains as an outcome

resolution of intra-personal conflicts (like the ones mentioned above)

as well--based on individual rational behaviour. This is true in parti-
cular for games with incomplete information--a class of which forms the
subject of this paper,

An importent development in game theory in recent years has been
in the study of multi-stage games--especially, the so called repeated
games, where the same game is played repeatedly. This suggests itself
as a good framework for incomplete information gemes, for two main
reasons.

The first one is that by its very nature, a repeated game has
enough structure to allow the kinds of complicated behaviour we described
above (and many others as well). There is enough "time" to enable players
to "generate" certain beliefs in other people, or to meke deductions,
statistical inferences, and so on. There is also place for threats,
for punishments--and for rewards too.

The second reason is more formal--although closely related to
the first one. Consider an infinitely repeated game with complete
information. A well known result (called the "Folk Theorem" since its

authorship is not clear) states that the non~cooperative equilibria in
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the repeated game precisely correspond to the individually rational and

Jointly feasible points in the one-shot game. The importance of this result

is that one obtains cooperative outcomes in the one-shot game from

non-cooperative behaviour in the infinite game., Thus, the cooperation

we usually observe is explained here not as an outcome of altruistic
motives-~but of purely selfish non-cooperative ones (which many feel are
the only rational ones),

One is therefore led in a natural way to the study of repeated games

of incomplete information. The first research on these was done in the

Mathematica [1966-68] reports, in particular by Aumann, Maschler and
Stearns. It turned out that the very complex structure of these games--
vhich, as we pointed out above, is one of the reasons for studying

them--creates many difficulties. Up to date, essentially only two-person

zero-sum games have been completely analyzed (see the forthcoming book

of Mertens and Zamir [1980], or the notes of Sorin [1980] for details).
As for the non-zero-sum case (still, only two players), a first

study has been done by Aumann, Maschler and Stearns [1968]. They

characterized a special class of equilibria, in the so-called standard

one~sided information case, where one player has more information

than the other one, and both observe during the play all the

actions taken. These equilibria~-called "enforceable joint plans'-~
essentially consist of a transmission of information from the informed
to the uninformed player ("signalling"), followed by a completely

non-revealing play from then on (similar to the Folk Theorem). Moreover,
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they showed that this does not exhaust all equilibria--one could have
Joint randomizations of enforceable joint plans, and so on.

Our main result in this paper is the complete characterization

of all equilibria in such games. We will show that every equilibrium

is equivalent to a collection of non-~revealing "plans", one of which is J

chosen at random. This choice is done via a sequence of communications,
which are of two types: signalling (i.e., implicit transmission of
information), and jointly controlled randomizations (i.e., "lotteries"
in which no one player can unilaterally change the probabilities).l/

Thus, we are able to characterize in a formal way all the kinds
of cooperation and communication that arise out of non-cooperative
behaviour in these games; moreover, we obtain a precise structure that
guarantees it does not pay any player to do anything else (e.g., revealing
less or more, or double-crossing, cheating, and so on). We would like

to point out that the model is not the most general possible (in parti-

cular, in terms of the information structure); this paper is to be

regarded as a first step in the analysis of non-zero-sum repeated games

) e s e o

with incomplete information.

!

Fe

- The formal model is described in Section 2, together with various

Lj notions of equilibrium. The main results are stated in Section 3, which k
Ef also includes additional discussion and intuitive interpretations. i
- § b

Sections U4 and 5 are devoted to the two parts of the proof, and in

Section 6 we present some results on enforceable joint plans, We would

A e aae o n s o
s T .

1ike to point out that Sorin {1981] has recently proved the existence of

1

-

such equilibria whenever the number of possible games is two.
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Some notation : R is the real line, and R" the n-dimensional
Euclidean space. For vectors x = (xl,...,xn) and y = (yl,...,yn) in
n
R", x>y means x; > Yi for all i =1,2,...,n, and x * y 1is the

n

scalar product ) X;¥;. For a finite set L, |L| is the number of
i=1

élements of L, and RL the lL|—dimensional Euclidean space with
coordinates indexed by the members of L (thus, we write
x = (xz)EGL = (x(l))QEL for x in RL). The unit simplex in RY
will be denoted by AL:

AL

L
={x€R% x>0 forall ¢ in L, ] x =1} .

x
L -
2EL

Finally, N is the set of positive integers {1,2,...}.

2. The Model
The class of games we study is given by the following:
(i) Two players, player 1 and player 2.
(ii) A finite set I of choices for player 1 and a finite set
J of choices for player 2; I and J contain each at least two
elements.g!
(iii) A finite set K of games; to each k in K there

corresponds a pair of I x J matrices (Ak,Bk), with

A= (AL e 5 B = BN g
J& g

.
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(iv) A probability vector p = (pk)kEK on the set K
(i.e., pP€ AK; without loss of generality, we assume pk >0 for
all k in K - otherwise, we may discard those k <that have zero

probability).

Based on (1i)-(iv), a game of incomplete information T (p) is
given as follows:

(v) An element «x of K is chosen according to the probability
vector p; player 1 is told «, player 2 is not.

(vi) At each stage t = 1,2,..., player 1 chooses an element it
in I and player 2 chooses an element Jt in J; the choices are made
similtaneously (or, without either player knowing what the other did).

(vii) Both players are then told the pair (it’Jt)’ and they get
the payoffs AK(it,Jt) and BK(it,Jt), respectively (but they do not
observe these payoffs).

(viii) Both players have perfect recall (i.e., they do not forget
what they were told at all previous stages).

(ix) All of (i)~(viii) is common knowledge to both players (see
Aumann [1976] for a precise definition).

Usually, (v) is called one-sided information (see also the

discussion below), and (vii) and (viii) - standard information. Note

that the players observe only the actual choices it and Jg» and not
the randomizations used.

Following Harsanyi [1967-68], this can be equivalently viewed as a
game with complete but imperfect information (namely, where the

uncertainty players have is not about the "rules of the game" - e.g.,

a e e 4w m - " L . 2 )
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payoffs - but only on moves previously made, by the players or by 3
chance). This is done by adding a stage t = 0, at which "nature"
chooses an element k of K according to the probability p. At each

stage t =1,2,..., the information player 2 has consists of the *
sequence of previous choices by both players: (il,Jl),(iz,Jz),...,
(it-l’Jt—l)' As for player 1, he in addition knows «.

This completes the description of T_(p). It should be pointed out
that more general games can be made to fit into this model. 1In
particular, consider the case where player 1 does not have full ‘
information on «k, but player 2 knows even less (see Mertens & Zamir
{1980, Ch.III]). Formally, a partition of the set K is given for each
player, which is informed only what element of his partition contains N
the chosen «. For example, let K = {1,2,3,4,5}, the partition of . !
player 1 is {1,2},{3},{4},{5}, and that of player 2 is {1,2,3},{k4,5}.
The (common) prior is p =(1/s, 1/5, 1/5, 1/5, 1/5). First, we observe

that both players distinguish between {1,2,3} and {4,5} - thus, there

are two completely disjoint games. 1In the first, both do not distinguish

between 1 and 2; therefore, this corresponds to K' = {{1,2},{3}} and

ML e A
. y te-

i p' = (2/3, 1/3), where the payoff matrix for {1,2} is A2}

: (1/2)A! + (1/2)A° and similarly for B. Note that 2/3 is the

g conditional probability that « € {1,2} given «x € {1,2,3}, 1/3 is

53 P(x = 3|x € {1,2,3}), and 1/2 = P(x = 1|k € {1,2}) =

% P(k = 1|x € {1,2}) = P(k = 2|k € {1,2}). In the second latter game,

;‘ K" = {4,5} and p" = (1/2, 1/2). Thus, the original game has been

T

decomposed into two games, each fitting our model. It should be clear
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how to generalize the construction given for this example.

il

Next we describe the sets of strategies of the players in R
F‘jp). For each t = 1,2,¢.., let Ht be the set of histories up to i

(but not including) stage +t, namely,zj

_ t-1
Hy = (x x J) .

A pure strategy o of player 1 is a collection o = {at}tj;, where

(2.1) o,: B x K+ 1

for all t =1,2,... « Thus, for every history ht in H, and every

t

k in K (the "true" game «x chosen), at(ht; k) is the choice it

made by player 1. In a similar way, & pure strategy Tt of player 2 is

o0
T= {Tt}t=1’ where
(2.2) t,: H +J

for all t = 1,2,-00 .

A mixed strategy is, as usual, a probability distribution over the

set of pure strategies. Since rw(p) is a game with perfect recall,
one can restrict the study to behaviour strategies (cf. Kuhn [1953] and
Aumann [1964]), where players make independent randomizations at each

move. A behaviour strategy is thus defined in the same way as a pure

strategy, with (2.1) replaced by

I
(2.3) o : Hy x K » 4%

and (2.2) replaced by
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(2.4) T,: H > .

Since we never use pure strategies specifically, the term "strategy"
will henceforth mean behaviour or mixed strategy.
We have not yet defined payoffs in Pm(p) - only sequences of

payoffs. Given a pair of strategies (o,1) of the two players, we

denote
T
(2-5) k = l Ak(i ’J ) ’
& =7 M M
1 § K
(2-6) 8, == B (i »d ) >
TTT LT e

for all T =1,2,... and 811 k in K. Thus, ag is the average
payoff up to (and including) stage T to player 1, if the -rue game is

k = k; this depends on the choices of it's and Jt's, made according to
o and Tt (actually, only o(e; k) and T matter). Let Ei T(a.l,;)
L)

denote its expectation. For player 2, BT is his average payoff up to
T; it depends on o,t and also on the choice of «k (according to
p). Let Eo,r,p(BT) be its expectation.

A pair (o,1) of strategies is a (Nash) equilibrium point in
r (p) if

ky

(ag

k
(2.7) lim inf E (a,};) > 1lim sup Ek,
P <0 0,1t Too g',T

for all strategies o' of player 1 and all k in K, and

amamy A cAER % . ded A 8 ¢ ORI 4 AT ST #T$) SMEEERE . & a8 1 AV NS el ALaa &3 % _& SMENma .
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(2.8) lim inf E (8,) > 1im sup E (8.)
o o, T,p T = Taco G, 1',p ' T

for all strategies <t' of player 2. If we take o' = ¢ in (2.7), we

get a vector a = (ak) such that

kX

(2.9) %1:: El;’r(a.l,;) - of

for all k in K. Similarly, t' =t in (2.8) zives B8 with

(2.10) %?: Eo,'r,p(BT) =8 .

We will call e and @8 the payoffs of the equilidbrium point
(o,1).

Note that they are computed ex-post--namely, after the choice of
k was made and player 1 was informed of it. Therefore, player 1
considers his payoffs in each possible state «x = k, whereas for player
2 only his expectation over x matters. It can be easily checked that
the definition does not change if we replace (2.7) by ex-ante
optimality, namely:

lim inf Eo,r,p(“'r) > lmsup E, o (ap)

T oo Ty

where GT is defined in the same way as B8 (thus, Ay = a;). Indeed,

T
since the value k of «x is in any case part of the information player

1 has at every stage, he can choose his best response against

K
"
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T 1independently for each k. In the imperfect information version of
r_(p), the adequate payoff is indeed this expectation over «; in the
incomplete information one, the vector of payoffs should be considered
instead since, given any "type" k - in Harsanyi's terminology - it
does not care about the payoffs to all the other possible types!

A strengthening of the definition of equilibrium is suggested by
the results obtained in the zero - sum case (i.e., where
A® + Bz 0 for all k in K). A pair of strategies (o0,7) is a

uniform equilibrium point in T_(p) if

(2.11) lim inf Eg T(al,;) > lim sup(sup Eg, T(a;))
Tro O Tsw o' 7

for all k in K, and

(2.12) lim inf E (BT) > 1lim sup (sup E

T O>Ts>P Tow s p(BT)) *

og,T',
Clearly, every uniform equilibrium point is also an equilibrium point
(if we change the order of limsup and sup in (2.11) and (2.12), we
obtain (2.7) and (2.8), respectively). The payoffs (a,B) are given by
(2.9) and (2.10).

To emphasize the difference between the two definitions, we

translate them into the "e - language". A uniform equilibrium satisfies

the following: for every € > 0 there exists T To(e) large enough

such that for all T > To’
k

(2.13) E T(alT() 5_ak + € and
L]

e e e vt L - o m e - s - o o m s a s L . g p - e -
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(BT)<5+93

o ,T',p

for all k in K and all strategies o¢' of player 1 and t' of player
2. For a regular equilibrium (according to (2.7) and (2.8)), T, may
also depend on o' and T'. The importance of (2.13) uniformly in ¢' and
7' is that it implies that (o,T) generates an e - equilibrium in all
long enough but finite games PT(p) (which are defined in the same way
as T _(p), but they only last T stages). Since T[_(p) may be viewed
as an "idealization" of such games, the uniform definition may seem more
appropriate.

However, we will prove the following result:

Proposition 2.14: The sets of payoffs of equilibrium points and

of uniform equilibrium points in T _(p), coincide.

Thus, although it is clear that there exist equilibrium points
that are not uniform, they are always payoff-equivalent to uniform ones.

Other definitions of equilibrium are also possible. For example,
one could use Abel instead of Cezaro summability; namely, limits as

p > 0 converges to 0 of

x

E(p ,
tzl (1+p)

where {xt}t:i is the corresponding sequence of payoffs (this is
interpreted as the limit, as the interest rate goes to zero, of the

current value). Banach limits (see Section 4) can also be used.
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However, in all cases the set of equilibrium payoffs will not change.

In view of this result, we can unambigously define the set of

equilibrium payoffs of Pw(p). Our main result will be a

characterization of this set.

.

N

Can one further strengthen the definition of equilibrium by
changing the order of limit and expectation? The answer is no - as an

example by J.-F. Mertens and the author shows already in the zero-sum

case.

3. Statement and Interpretation of the Main Result

In this section we state our main result - the characterization of

all equilibria in T_(p).

The Folk Theorem in the complete information case states that the

el a2

ik IS A0E Sl Sie a0 e 4 N e
- B ST

set of equilibrium payoffs coincides with the set of feasible and
individually rational payoffs. We consider first the notion of
individual rationality; it is to be understood in the sense of what each
player cannot be prevented from obtaining (i.e., the "minmax"). The
study of the zero-sum case (Aumann & Maschler [1966]) enables us to

characterize individual rationality in T_(p).

Y

We need some notation first. Let p be a probability vector in

8, let p+ A  bve the matrix | pA¥ (i.e., whose (i,))th element
( K,k KK
is ) pA(i,J)). Consider the two-person zero-sum game with payoffs
k€K

to player 1 given by p * A, and let (vallA)(p) denote its value (when

e Al mnl AR

played just once). Thus,

Caara )

r
-
B S

E (3.1) (VallA)(p) = max min (p s A)(x,y) = min max (p « A)(x,y) ,
LL xeal yea’ yer® xeal
£y I
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where x = (xi)iei s Y = (yJ)JGU , and

pA%(1,3) .

(p~A)(x,y) = 2 ): xiyJ ké(

ia Jg

Similarly, let (valzB)(p) be the value to player 2 of the two-person

zero-sum game with payoff matrix p « B to player 2. Clearly,

(3.2) (val2B)(p) = - (vall(- B))(p) .

For a function f on AK, let vex f denote its convexification;
namely, vex f 1is the largest convex function on AK that does not
exceed f. We will write (vex valzB)(p) for the evaluation of the
function vex (valzB) at the point p.

K

We can now define: a vector a = (ak)lEK in R° is an

individually rational peyoff vector to player 1 in T _(p) if

(3.3) qe*a z_(vallA)(Q) , for all q in P

A scalar B in R is an individually rational payoff to player 2 in

r(p) 1irf

(3.4) 8 > (vex val B)(p) .

These definitions are the correct ones, in view of the following

results. A set Q in RK is approachable by player 2 (cf. Blackwell

[1956]) if there exists a strategy Tt of player 2 such that

;Eﬂ (szp Ea,r(d(Q’aT))) =0 ,

o odid L A L e o as
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where a_ = (ak) (recall (2.5)), 4 1is the Euclidean distance in
T T’ keX
RK, and the supremum is over all strategies o of player 1. i
Proposition 3.5: Let a be a vector in RX. Then (3.3) is a
necessary and sufficient condition for the set Q = {x € RK : x < a} to

be approachable by player 2.

Proof: Blackwell [1956]; for example, see Aumann & Maschler

[1966] . Q.E.D.

Thus, if (3.3) is satisfied, then player 2 can guarantee that the
payoffs to player 1 will not, in the limit, exceed ak for all k in
K simultaneously. If (3.3) is not satisfied, then given any strategy
of player 2, player 1 has a strategy such that, for at least one k
in K, he will get more than ak.

For player 2, we have

3

Proposition 3.6: Let B be a scalar in R. Then (3.4) is a

necessary and sufficient condition for player 1 to have a strategy

SPIVCIRCI ¥ ¥ O

o such that
1lim su sup E < ;
pind ( P o,7,plPp)) £ B y
"
where BT is given by (2.6) and the supremum is over all strategies
T of player 2. i
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Proof: Aumann & Maschler [1966]; see (3.2). Q.E.D.

Again, this means that player 1 can hold player 2 down to

(vex val2B)(p) in T_(p), but to no less than that.

Having completed the study of individual rationality, we come next
to feasibility. Let us consider a simple case first. Fix i in I
and J in J: is there an equilibrium resulting in the pair (i,J)
being chosen at every stage? Clearly, the anawer depends on the actions
the players will take "outside of equilibrium” - namely, when (i,J) is
no longer been played. Agein as in the Folk Theorem, it is easy to see
that the necessary and sufficient condition is precisely individual
rationality for both players (each will use the corresponding strategy

given by Propositions 3.5 and 3.6, respectively, immediately after the

other deviates from (i,j)). Therefore, the payoffs & = (Ak(i,J))kgx
and B= J pkBk(i,J) will be equilibrium payoffs in T _(p) if and only
!I ifr (3.3) Eﬁg (3.4) are satisfied.

This reasoning can now be extended to any convex combination by
using the corresponding frequencies. It generates a class of equilibria

h‘ in ra(p), which result in player 1 actually playing the same for all

bR §

k in K (i.e., independent of «k ). Note that this is true only "in

equilibrium” (i.e., so long as there are no defections); "out of

v

equilibrium", the strategy given by Proposition 3.6 may depend on . We

will thus call these equilibria non-revealing.

To define formally the corresponding payoffs, we denote by

(A,B)(1,3) the vector

- — Y
T T At o
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(A,B)(1,0) = ((A%(1,3)) q» (BY(1,0)), o) € B x BC |

forall i in I and J in J. Then, let
(3.7) F =conv {(A,B)(i,3) : i€1, 3€J} ,

where "conv" denotes the convex hull of a set. F can be viewed as the
set of feasible vector payoffs (in the one-shot game).

Let M be the maximum absolute value of any possible payoff:

(3.8) M= mx {|A%(1,3)], |B¥(3,3)|: i€ I, 3eJ, keK} .

We then write Rﬁ for the set of all vectors in RK, all of whose

coordinates are bounded by M. We also put RM for the real interval
K

M.
Finally, we define the set G as follows: it consists of all

{-M,M] (thus Rg = (RM)K) . Clearly, F is a subset of Rﬁ x R

triples (a,B,p), with a in Rﬁ, B in RM and p in AK, such that

(3.3) and (3.4) are satisfied, and there exist ¢ and d in RK with

(3.9) (c,d) EF ,
(3.10) a>c and pea=pec ,
(3.11) B=p-d .

As in the zero-sum case, we will find it necessary to consider all
the games r“(p), as p ranges over AK, at the same time; a triple
(a,8,p) is understood as (a,B) being payoffs in T_(p).

In view of our previous discussion, G 1is essentially the set of
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payoffs corresponding to non-revealing equilibria (note that (3.10) can

be restated as: ak = ck if pk >0, ak‘i ck otherwise - therefore,

a and c are identical for all relevant games). i
Our main result states that, based on the set G, we can
characterize all equilibrium payoffs. We thus define the concept of a

G-process, as follows.

Let g = (a,B,p) e,Rﬁ x RM x oK, A sequence {gn}n:; = {(a_,8 ,p )}

n’'n’“n’‘n=1
of (Rg x Ry x AK) - valued random variables (on some probability space)

is called a G-process starting at g 1if:

(3.12) g =g a.s. .

(3.13) There exists a non-decreasing sequence {Zn}n:i of finite

tields®/ with respect to which (g} o 18 a martingale.

(3.14) Let g_ be an a.s. limit of g, (as n + =); then

8,EG a.s. .

(3.15) For each n = 1,2,..., either 8,41 = 8, 8.S., Or

Pp41 = P BeS.

The martingale condition in (3.13) means that g, is zn- measurable

{; and E(8n+1lzn) = g, a.s. for all n. Together with (3.12), it

¥ implies

& >
{ E(gn) = g for all n. Since the sequence is uniformly bounded, the R
b g
5 Martingale Convergence Theorem implies that it has an a.s. limit - thus ;
A (3.14) is well defined. It then means that g_= (a_,B_,p,) satisfies !
8 ;

-
LNV VAL
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a.s. individual rationality for both players (i.e., (3.3) and (3.4)),
and also (3.9) - (3.11).

The last condition (3.15) is slightly unusual; at every step,
either a or p remain constant (while the other may change - but in
such a way that the conditional expectation does not, by (3.13)). If we i

disregard the Bn coordinate, such a process may be called a bi-

martingale (see Proposition 3.18 below). The study of such objects will
be taken up in a forthcoming paper of R. J. Aumann and the author.

Finally, we define G* as the set of all points g = (a,B8,p) in
Rg x RM x AK such that there exists a G-process starting at g. We
note here that (3.12) and (3.15) are essential conditions; without
either one, G* will just be the convex hull of G.

We are now ready to state our main result.

Main Theorem: Let & € RS and B € R. Then (a,B) are equilibrium

payoffs in T _(p) if and only if (a,B,p) € G*.

Thus, the set G* is the graph of the equilibrium payoffs

3 correspondence (as p ranges over AK).
The Main Theorem and Proposition 2.14 will be proved together (we
- know éf no direct proof of the latter alone). This will be done by
1‘ showing first (in Section L4) that all equilibrium payoffs, according to

the regular definition (2.7) - (2.10), belong to G*. And second, by

constructing (in Section 5) a uniform equilibrium (cf. (2.11) and

(2.12)) corresponding to any point in G*.
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The second part of the proof leads us to an important additional
result; namely, that all equilibrium points in ra(p) are equivalent to
a special class of equilibria (those we construct in Section 5).
Informally, such an equilibrium consists of a "master plen", which is
followed by each player so long as the other does it too; and of
"punishments", which come into effect after a deviation from the master
plan has been detected.

The master plan is a sequence of "communications” between the two

players, the purpose of which is to eventually settle on a point in G
vwhich is played forever from then on (using frequencies), and leads to
the desired "payoffs".The communications are of two sorts:
"signalling", where the informed player 1 plays dependent on « (and
thus reveals some of his information to player 2, who can update his
posterior probabilities); and joint decisions, more precisely "jointly

controlled lotteries", where the two players make together a

randomization on how to continue the play. Signalling has already been
obtained in the zero-sum case; however, the jointly controlled lotteries
(in which the uninformed player plays & no lesser role than the informed
one) are a feature of the non-zero-sum case only.

At the end of the communication period (which we assume for the
moment to consist of finitely many stages only), player 1 will play
independent of x (otherwise, he will reveal additional information) -
and thus a non-revealing equilibrium results from then on (a point in
G). In the general case, the sequence of communications may be

infinite. However, after a long enough time, almost everything that was

o e L e o oo
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ever going to be revealed (by player 1) or decided (by a Joint
randomization) has already occured - and we are essentially at a non-
revealing point again {(i.e., in G). To generate the right payoffs,
"payoff accumulation" periods are then introduced between communications
- at which both players choose prescribed moves (again - with the
correct frequencies).

Finally, punishments are always in accordance to the strategies
given by Propositions 3.5 and 3.6, respectively (see Proposition 3.16).

The structure of such equilibria is summarized in Figure 1.

Figure 1
signalling
communications
jointly controlled
master plan randomizations
payoffs
(by frequencies)
deviation
detected
v
punishments

(to individual
rational level)
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The G-process is thus "followed" during the play. At each stage,
the corresponding g = (an,sn,pn) will serve as a "state variable",
with a, in Rﬁ being the vector payoff player 1 will get from then
on, 8 in R, the same for player 2 (averaging over k), and
P, in AK the vector of posterior probabilities for «.

Why is an equilibrium thus obtained? CTCeviations during
communications stages are not helpful: Jointly controlled lotteries are
so designed as to have each one of the players generate the right
probabilities even if the other does not; as for signalling by player 1,
it occurs precisely when an+1 =a, in the G-process, which makes him

indifferent among the various alternatives. 1In all other cases, the

punishments keep the players in line. This is due to the following:

. ) X
Proposition 3.16: Let {(an,Bn,pn)}n=1 be an (Rﬁ x Ry x & ) -

valued martingale, converging a.s. to (e_,8_,p ). Then:

(1) a_ satisfies (3.3) a.s. if and only if a, satisfy (3.3)

a.s. for allzj n=121,2,00¢ o

(11) (8_,p_) satisfies®/ (3.1) a.s. if and only if

(Bn,pn) satisfy (3.4) a.s. for all n = 1,2,... &

Proof: The "if" part is obtained by taking the limit as
n + o (in (ii), we use the continuity of the function
vex valzB - e.g., see Mertens & Zamir {1980, Theorem 3.1k}).
Let {Zn}n:i be the corresponding sequence of o - fields, then

ve have a = E(ag[Zn) by the martingale theorem. The "only if" part

PN Y W
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in (i) is obtained by taking conditional expectations over Zn' As for

(ii),
B, = E(B,]Z ) > E((vex val,B)(p,)|Z )
> (vex valzB)(E(pQIZn)) = (vex valzB)(Pn) s
where we used the convexity of the function vex valzB . Q.E.D.

This last result leads to an additional interpretation of G* as

outcomes of bargaining processes - see Aumann [1981].

Corollary 3.17: Let (a,B) be equilibrium payoffs in
Pujp). Then a and B are individually rational for player 1 and player

2, respectively.
Proof: Proposition 3.16 for n = 1 (recall (3.12)). Q.E.D.

Another property of a G-process (which led to the name "bi-

martingale") is as follows.

Proposition 3.18: Let {(a ,p )}

K K
n°Pn) tn=1 be an (RM x A) - valugd

martingale with respect to a non-decreasing sequence of ¢ - fields

(-] o0
{Zn}n=1' If (3.15) is satisfied, then {an . pn}n=1 is also a
martingale with respect to {Zn}nzl'

Proof: Let n be such that a = a_ &.8.; then

—_— n+l n

E(an-l'l * pn+llzn) = E(an * pn+1lzn) = a"l'l * E(pn+1lzn) = an * pn ?

since a is Zn - measurable. The same when p Q.E.D.

n+1 - Pn°*
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L, From Equilibrium to Martingale

This section contains the proof of the first part of our result;
namely, given an equilibrium point we construct the corresponding
G-process (see Proposition 4,43 at the end of the section for a precise
statement ),

We start with an informal discussion of the proof. Let
(0,1) be an equilibrium point; to simplify the arguments, let
us assume that the frequencies with which the various pairs (i,j) in

I x J are played, always converge. Let c_= (c and 4 = (d::)kE

keK
be the limit payoffs, then clearly (Cw’db) € F, For every history

ht up to stage t, we then define the following: for each k in X,

ak(ht) is the expected payoff to player 1 if k = k (thus, ak(ht) is
Just the expectation of qf given ht); G(ht) is the expected payoff
to player 2 (the expectation of d: given ht); and pk(ht) is the
(posterior) probability that « = k (again, given ht)' We next
introduce "half-steps", i.e., we define the above conditional expecta-

tions when given both ht and the next move i of player 1l; we will

t

thus write ak(ht,it), and so on.
Assume ht has positive probability of occurring when «k = k.

Then ell possible moves i, of player 1 (i.e., those with

ofh k)(it) > 0) must have the same expected payoff ak(ht,it). Other-

¢ 2

wise, player 1 could give probability 1 to that it leading to the

highest payoff; this would be "undetected" by player 2 (since this it

is possible according to o), thus giving an expected payoff

:1
:
l1
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k . R . . .
of a (ht,lt), which is higher than that given by o¢. This contradicts
the equilibrium conditions, therefore ak(ht,it) must be constant--

k
hence, equal to a (ht) —-for all possible it‘s. A similar argument

shows that for the other it's an inequality is obtained (if they are
not chosen, then their corresponding payoff cannot be higher); this will

eventually lead to the condition (3.10).

Next, consider the half-step from (ht,lt) to ht+l = (ht’lt’Jt)'

Since player 2 does not know «k, J is independent of it, and the

t
posterior probabilities cannot change. We thus have pk(ht,it) =

k(h ).

P A0

It is easy to check that in all other cases, the martingale
conditions are satisfied; e.g., E(ak(ht+l)|ht,it) = ak(ht,it), and
so on. We have therefore obtained a martingale (with the index set
being that of half-steps), which furthermore satisfies (3.15). The
individual retionality conditions (3.3) and (3.L4) also hold
(since otherwise (0,7) will not be an equilibrium), and one can show
that, in the 1imit (which exists by themartingale convergence theorem),
a point in G 1is a.s. reached.

The actual proof will be quite complicated. Since we have no

convergence of the payoffs, we will need to use Banach limits. To

facilitate following the arguments, we divided the proof into a sequence

of subsections.

AL . A"_‘

P e P v S N MU S e e
- P : L A



WP

w—uy

-27-

4.1 The Probability Space

For each t € N (the set of positive integers), we defined

t-
o= (Tx 2",

the set of histories before stage t, We also define the set of

infinite histories

H o= T (I1xJ) ,
t=1

an element of H_ being a sequence {(it,Jt)}:;l of moves made by
the two players at all stages.

On H_ we define for each t € N the finite field generated
by H

and call it H,; thus, two infinite histories belong to the

£

same atom in Ht if and only if they coincide up to (but not including)

t’

t. Let H_ be the o-field generated by all the Ht's (usually called
the cylindrical or the product o~field on the space H_).

The basic probability space will also include the choice of
k in K by chance. Thus, let 2 = H X K be endowed with the
o-rield H_@ K. Fach pair of strategies (0,1) and each probability

vector p € AK for the initial chance move determine a probability

distribution on this . We denote it by P 3 note that E

istribution on this space e denote Yy 0,10’ o 3,7 ,p

used in Section 2 is precisely the expectation with respect to Po ,p’
L IR ]

and E§ T is the conditional expectation given «k = k.
9
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We will use some additional fields on qm. For each t € N,

let

t-1l
) x I=H xI |,

Ht+% = (I x J +

and Genote by Ht+; the finite field it generates. We have now
2

defined Hs and Hs for all half-integers s, namely allzj

sEN, = {1, 1%, 2, 2%,...}. DNote that {Hs}sem is an increasing

sequence of finite subfields of H_, converging to H_ as s + =,
Since our probability space is actually @ = H°° x K and not
Hm, we will denote the field generated by HS on  also by Hs; this

will generate no confusion.

4.2 Banach Limit

In order to deal with the non-summability of the sequences of
payoffs, we introduce the concept of a "Banach 1imit" (e.g., see Dunforad
and Schwartz [1958], p. T3).

As usual, let g_ be the (Banach) space of all real bounded

sequences x = {xn}:; . A Banach limit is a real operator L on L

1
8
with the following properties—/(holding for all x = {xn}n and

Y={Yn}n in ¢ _,and X,y in R):

(1) L e x tuey P =ae L)) +u e Wiy D
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(h.2) L= ) =Llx) )
(4.3) liz*inf x < Lllx}) < liﬁ*:up x .

In particular, note that (4.3) implies:

(b,L) L({x }) = 1im x , if {x} 1s a convergent sequence .
n n n
b ¢ sand
Therefore the Banach limit is an extension of the notion of limit

(to all bounded sequences). To slightly simplify the notation, we will

henceforth write L{x ] for L({x Y ).
n n n=1

Three further properties of Banach limits will be needed.

Lemma 4.5: Let L be a Banach limit, and let {xn}n,

{yn}n €2 . Then

lL[xn] - L[Yn]| < liz*:up lxn - ynl .

Proof: Immediate by (4,1) and (k.3). Q.E.D.

Lemma 4.6: Let L be a Banach limit, and X = {xn};=l an

L -valued random variable (i,e., X is a measurable function from

some probability space into 2“). If X has only finitely many values,

then

L[E(Xn)] = E(L[Xn]) .

aa e =t
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Proof: Immediate by (4.1). Q.E.D,

In particular, this result will be useful for conditional expec-
tations over finite fields. One could actually define a stronger con~
cept of Banach limit, which commutes with the expectation operator for
any uniformly bounded (or, even uniformly integrable) sequence of random
variables--without the finiteness assumption. The construction of such
a so-called "medial 1imit" requires however the use of the continuum
hypothesis--and it is not needed in our proof (cf. Mokobodzki, see

Meyer [1973]).

Lemma 4.7: Let L be a Banach limit, and C & compact and
convex subset of some Euclidean space R°. Let ‘{xn}:;l be a sequence

(2) LI )

N ,s,(lm)). Let nt¥) =L[gr(lr)] for

. _ (D)
in C, with x = (En N3

(1)

r=1,2,...,m. Then y = ( ,n(e),...,n(m)) € C.

Proof: Let q be any vector in R", then by (4.1), (L.3)

and x € C,
n

q*y=1L[q- xn] < lim sup q * x < sup {gecicEC .
e

This holds for all q3; since C 1is a compact convex set, it implies

y € C. Q.E.D.

Given a Banach limit L, we can now define the concept of an

L-equilibrium point in T_(p), by replacing (2.7) with

'
-
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k k
(4.8)  LES ()] LIES, (s ,

and (2.8) with

(1.9)  LlE, , (81> LIE (8] ,

where the limit L is taken with respect to the index T = 1,2,...;
this convention will be kept throughout this section. The corresponding

payoffs will then be
k k
(5.20)  LIEG (ap)] ==

for each k in K, and

(k.11) L[Ec’r’p(BT)] =8 .

k
We put a = (a )MEK'
In view of (4.3), every equilibrium point is also an
L-equilibrium point for any Banach limit L.

Throughout this section, we fix the following: a Banach limit

L, a probability vector p in AK, and an L-equilibrium point (0,T)
in T_(p) with payoffs (a,B) € Rﬁ * Ry. Unless stated otherwise, the

probability measure P =P _ o is assumed (on the space ), with
Lt

E = E0 ,p the corresponding expectation operator. Thus, all statements
L AL

"a.s.", "martingale", and so on, will be with respect to P, Also, we

will use EX for the conditional expectation E(+|x = k).
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Our purpose is to construct a G-process starting at (a,B,p).
The probability space on which it will be defined is 2, and the

. . r
sequence of fields is LHS}S€N2.

sa g e s

4.3 The Martingale {ps}

For each k€K, s € N2 and an history hs € HS, let p:

pi(hs) be the conditional probability of the "true" game «k of being 1

2ed

k, given 0, T, p and h, (namely, if s =t € N, the first t - 1
moves of each player; if s =t + 3, t € N, the first t moves of

player 1 and t - 1 moves of player 2). We can thus write

Py = Py o ok = kIH)) = P(klH )

(on each atom hs € HS of HS, pg is a.s. constant, thus a.s. equal

k)
s’k€K *

k
to ps(hs))' We put P, = (p

Proposition L.12: The sequence {ps}SEN is a AK-valued

L -‘.7 N

) 2 :

“ martingale with respect to {H } , satisfying: !

Y s sEN2 1

i

g

- (4.13) P, Ep .

:‘ (

2

g (4.1k) Piyy =P, forall tEN .

I

t‘ |
[

p—
]
}
]
]
1
b
!
}
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(4.15) There exists a r¥_velued random variable p, such that
P, * P, @.S. 88 S> =

Proof: The fact that {p:}s forms a martingale is immediate

from its definition. Since it is bounded, it must converge a.s., say
X .k

to p_; then p_ = (Pw)hEK' (4.14) follows from the fact that given
By g (actually, only b, suffices), the t-th move J, Of player 2
is independent of «; as for (4.13)~-at t = 1 there is no history

yet, hence posteriors and priors coincide. Q.E.D.

4.4 The Martingales {YS} and {68}
In Section 2, we defined the average payoffs of the two players

up to time T (see (2.5) and (2.6)). We will find it useful to define
also

(4.16) &

i
T

c’.
(R x|
[}

K,.
- A (1t,Jt)

(i.e., & = a;). For each s € N,, let

2’
Y, = L[E(aTle)] ,

5, = L[E(BTIHS)] .

. - P P S TN .

Y W Y Y.

i




o —r—r T T —T
" T———— —— . - T Y R lken T T ”

-3h4-

TV Ty ]

Thus, Yq and Gs are the (Banach) limits of the expected average

payoffs to player 1 and player 2, respectively, given a history hs.

Proposition 4.17: The sequences v}y o8nd {8}, oare
2

V—‘n"‘-r_-v TYSYITNY H’
. . PR

2 ‘.

RM-valued martingales with respect to {Hs}sEN . satisfying: y

2 3

f‘ (4.18) Y 2P 2 and 61 =g . i

s

1

(4.19) There exist R -valued random variables y_ and §_ = such ;

L‘ that y_-+y, and §_ -+ 6 a.s. a3 s> . ’
»

Proof: We can use Lemma 4,6--the field H_ being finite, y

has finitely many values: i

By gy M) = B(LIEGaglH ) 1K)

= LIE(E(aglH ) [H )]

& L[E(aTle)] =y,

-~

Thus {y_ } o~ forms a martingale. It is bounded by M (which bounds
2

all possible payoffs by (3.8), hence also averages, expectations and

g
[ Y

limits--by (L4.3)--of those). Therefore it converges to some limit «vy_.

b g e ar oan

For s =1, we have

Y
TN VR I B

= = k k. k i
Eaglf)) = Blop) = [ B Bak)
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hence (4.1) and (4,10) give Y, =P 8 The sequence {68} is dealt

with in a similar way (cl =8 is just (k.11)). Q.E.D.

4,5 The Martingales {cs} and {ds}

We now associate vector payoffs to each infinite history. We

define, for each k in X and T in N,

T
k.
-Z- B (lt,Jt) 2

in a similar way to the definition (2.5) of ag. Note that these are

T+l-measurab1e (k is fixed; in ccntrast, o and

o in (4.16) and (2.6) are (HT+169 2K)-measurable). We further remark
that ag and b; are defined for all histories~~even those which may

random variables, H

B

be incompatible with « = k according to (o,t).

If the limit of ag (as T + =) would always exist,
it would imply E(lim ag) = 1lim E(ag). However, this is not the case,
and the Banach 1imit L commutes with the expectation operator if
there are only finitely many values (see Lemma 4.6 and the discussion

thereafter). We define, for each s € N,

. = LIE(afIH,)]

o
]

o
i

= L[E(bg[H )]

[
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(again, for each k in K). Note that the expectations are not condi-
tional on k = kj; thus, the probability of any history is its total
probability, summed over all k in K.

One can interpret cg and dg as follows. Let hs € Hs have
positive probability, then p, = ps(hs) is the wvector of posterior
probabilities for the various games k. Assume that after hs occured,
player 1 replaces his strategy o¢ Dby his average non-revealing strategy
there; namely, for all k in K, he uses ) pgct(ht; k) instead

k€K

of o.(h k) whenever t > s and ht coincides with hS up to s.

AR
The expected average payoffs up to T in game k will then be
E(a¥|hs) and E(b;lhs), respectively, As we shall see later, the
difference in payoffs due to this change in strategy becomes negligible
as s > o (Proposition 4.23). Intuitively, this is due to the fact
that after sufficiently many stages, player 1 has already revealed
(almost) everything he is ever going to reveal about the true game K}
therefore, he must thereafter play (almost) non-revealing, or (almost)
independent of «x. In technical terms, this occurs whenever the martin-
gales are close to their limits.

As usual, we write c_ for (ck) k) The

s’ keK s k&K’

set F was defined in (3.7) as the set of all "feasible" vector payoffs

and dS for (4

to both players (in the one-shot game).

Proposition 4.20: The sequences {cS}S€N2 and {ds}SGN2 are
1"K-Va.lued martingales with respect to {H_} , satisfying:
M s sEN2
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(k.21) There exist Rﬁ-valued random variables c_ and d_ such

that cs > c and ds -> db a.s. as s+ o
(k.22)  (c_,d )EF a.ss, .

Proof: The martingale property and (4,21) are proved in a
similar way to Proposition 4.17. For every T in N, the vector
k k
((aT)RGK’ (bT)kEK) belongs to the compact convex set F, as an average
of such vectors. The same holds for its expectations, and by Lemma 4.7

for its Banach limits (cs,ds) too. (k4,22) now follows by letting

S » w, Q.E.D.

The next proposition makes precise the statement that, as s > o,
player 1 plays "almost" non-revealing after s (see the discussion

following the definition of cz and dz).

Propositior 4.23:

Ys mPg * G5 7 0

Gs - Py * ds + 0

a.8. 88 8 > o,

Proof: We prove here the first part, Fix s € Na, and let
t > s, t € N. Conditioning over Ht+l and k gives (recall that

= P(k = k|{H, . )):

x
Piyy t+1

Pt o




:‘ E(A(1,,3, )0 )

- payoffs up to

|Ys

lemma,

and let T > <=,
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g( § pf A RERILN

) pkEA (3,53 ) [H)
€K

k k
! thE((pt+1 ~ p A ¢35 1Hg)

We sum this for all t 1in the range s < t < T, and note that total

s are bounded by sM, to obtain
Fi ] k., k
E(a, |H ) = ) poE(a’|H )]
1 T''s K S T' s
M k k
oMu w7 T E(py,, - wellH)
T T oy owex | YL s s
Sfth
We denote (for each s € NE)
k
L Z sup lp -p I s
S jex ten UL S
t:s

By Lemma 4.5 and (k4,1),

-pg el <M E(mIH)

(ns[Hs) + 0 a,s.

s

Since {ps}s converges a.s. as s * © by (4,15), it follows that

as s * ®; this assertion is proved in the next
H p

Q.E,D.

PO . P S

B
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Lemma 4,24: Let {Xn};=l be a bounded sequence of real random
variables, converging a,s. as n + », and let {Fn}:=l be a non~
decreasing sequence of g-fields, Define

Yn = sup le - an »
m>n

then

E(Yann) +0

a,S. as n + »,

Proof: Let X, =1lim X , and put Z = sup X, - X.|. Then
o >

{Zn}n_ is a non-increasing sequence as n *> @, converging a.s. to

is & bounded super-martingaleg/ with

zero. Therefore {E(z |[F )}
n n n=1

respect to {Fn}:=l’ hence converges a.s. to some Z_. Now
E(E(anFn)) = E(z ) >0, thus E(Z)) =0 and Z, =0 a.s. Noting

that Yn < 2Zn completes the proof. Q.E.D.

Finglly we have

Corollary 4.25:

Yo = P ' C, 8&.S.

Proof: (k4.15), (4.19), (4,21) and Proposition k.23, Q.E.D.

' T
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4.6 The Martingales {es} and {fs}

For each k in X and s in N2, we define

k _ k k

e, = su? L[Ec',r(aTle)] ,
o}

where o' ranges over all strategies of player 1 (note that the

expectation now is conditional on k = k). Thus, for every history

hs 1S HS, ez is the most player 1 can obtain if the true game is k

and player 2 uses T -~given that hs has already occurred.

Proposition 4.26: For every k in K, s in N, and t in

2
N:
(4.27)  &Fzaf |
1
(4.28) 5> &
s - s
kK _ ..k
(L.29) iy = E(et+1IHt+%) .
(4.30) eh.) = max e (h ,i,) for all h, in H, .
: t' 7t . t+s 12t t t
ier
t
Proof: (4.27) is just (L4.8) and (4.10). To obtain (4.28), we
consider the following o¢': if kx = k and hS occurred, play the

average non-revealing strategy given by o3 namely,

PRI ) YRR PO S SR IR S uir S St WS e

s A

2
1
4
=
1
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k! . .
oi(h; k) = k'Za(ps o,(h ; k') forall t>s and h. in H_ that
coincide with hs up to s (see the discussion following the definition

of c: and dg in subsection 4,.5),

To prove (4.29), note that the additional information from

t+% to t+1 is Jt ~~ whose distribution depends on T and ht

only, hence is the same in Eﬁ, as in E, Therefore

. T

k
i:P L[Et',r(aTIht+%)]

sup LIE(EG, (apln ;03,00 5)]

o!

X k
s;;L'p E(L[E, ’T(aTI ht+l)]l ht+;2

(we used Lemma 4.6). Given h, .3 the first stage player 1 has to
choose & move is t + 1, and by that time he will already know Jt'
Thus, the best he can do given htd§ is just to do his best given
(htig’Jt) = h, ., for each possible Jy- Therefore, the last expression

is

k)

k
= E(S;l'p L[El;,,t a'TIht"'l)]!ht'Plﬁ) s

proving (4.29).
Next, let ht € Ht be given., For any o', its relevant part
Ek k .
for L[ 1 T(aT[ht)] consists of a probability distribution
9

m= oé(ht; k) in AI for choosing 1i,, and some strategy afterwards

t’
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*); k), for each possible 1i,. Therefore

o" = 0"(it) =o'((n,, t

t? t’

(again using Lemma L4.6)

b

k
et(ht) = sup sup E'k(L[E'k(aklh i )1ln,)
ne s T' "ttt t

I o"(4i

= t

vhere E'" is just Eg, .+ The choice of o"(it) can be done
£

gk

separately for each 1 therefore we can interchange the first E

t’

with the supremum over ¢"(iy), to obtain

(n,_,1,)

k -
e (h ) = sup Yy w1 )et+1 ool

vemI lteI
The supremum is attained by giving positive probability n(it) only
to those i, for which (n ’it) is maximal; this proves (4.30).

t t+¥
Q.E.D.

It is easy to see that (L4.29) and (4,30) imply that
es = (eg)kEK forms a super-martingale. To obtain a martingale, we
define

k k
f =e + (e -
] es rzn € er+%)

r<s

. . _ (oK
for all k in K and s in N,, and put f_ = (fs)kEK'

1
|
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‘s . K
Proposition L.31: The sequence {fs}SENz is an RM—valued

martingale with respect to {H } , satisfying:
s leN2

(L4.32) fl za |,
(4.33) f, = ft+% for all t in N .
(L.3%) There exists an Rﬁ-—valued random variable f_ such that

fs -> ﬁm a,s. 8 8 +» » ,

(4.35) £

|1V
D
1v

cs for all s in N R

(4.36) £

1v

c. and P, Q”

0
J
L]
0
w
7

Proof: (4.32) is immediate from (L4.27) and the definition

of fl. Let t € N, then

_ k kK k
i‘i(%—etéé+léq(er—er+;§)+(e - o)
r<t
_ k k k y _ Jk
=€+ rém(er - er+1§) £, o
r<t

proving (4.33). Moreover,

ok k koo

t+1 T Yol T Spe1 T Ces
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c since the sum of the additional terms is identical in both fl;_l and
_i f:+%. Using (4.29) completes the proof that {fs} indeed forms a
. martingale (note: with respect to the probability measure P = P . p).
[
|

Since it is bounded, (4.34) follows.

By (4.30), f§ > ez

e: > c: and qf > qf a.s. (recall (4,28) and (L4.21)).

-

(all the addit.onal terms are non-negative),

k
hence fs >

Therefore p « £ > D + c =vy_ (by Corollary 4.25). To

©o

obtain the opposite inequality, we note that {ps} and {fs} form a

;.f.v'r‘v.rw*im .-

bi-martingale, hence {ps . fs} is a martingale (Proposition 3.18), and

tq we have by (4.13), (L4.32) and (4.18)

E(pm . fm) = E(pl . fl) =pea= E(Yl) = E(Ym) ,

proving that P f =y =p ec 8.8, . Q.E.D.

4,7 Individual Rationality

We start with player 1.

Proposition 4.37: For all vectors q in A% and all s in W

Qs fo>qce > (vallA)(q)

Proof: Let q € AK, and consider the one-shot zero-sum game A(q).
By definition (3.1), player 1 has a strategy u € AI such that for any

strategy v € AJ of player 2,

o A 5 & wr mt emn an ———. . = =

e A
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(4.38)  (verada@) < § Juv, | atA%(1,9)

i€l jaJ k€K
Let hs € H, have positive probability (under (0,t)). Define a new
strategy o' of player 1 as follows: o'((hs,-); k) =u for all k, and
o' equals 0 otherwise (thus, after hs has occurred, player 1 makes
independent randomizations with distribution u at all stages and all

k). By (4.38), we have for all t in N, t > s
k k
1. A E i
(val,A)(q) ¢ 0,,T( I QA (1,.d,)]n,)

As T =+ o, payoffs before s become negligible in ag, and we have

(by (4.2), (4.3) and then (4.1)):

k k

(vel,A)(a) < LIE, (] q'agln )]
_ k k

= 1 a'LlE,, (ap|n))]

Recalling the definition of ez (note that given h,, Ei, . is
9
independe 1t of k),
(val a)(@) ¢ J aefn) = a + e m) ,
k&K
and q* e <q*f follows from (L,35) . Q.E.D.
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Corollary 4.39: For all gq in aK

q+f > (VallA)(q) a.s. .
Proof: (L.34) and Propositions 3.16(i) and 4.37. Q.E.D.

We consider now player 2,

Proposition 4.4L0: For all s in N

n
8, > (vex valeo)(ps) a.s.

Proof: For each q in AK, let Pf(q) be defined in the same
way as T_(q), but with payoff matrices (—Bk)MEK instead of (Ak)kEK

for player 1. This is a zero-sum repeated game; therefore player 2

(the uninformed player) has a strategy t = 1(q) such that

A

Il ~113

lim sup E_, - (

Ky,
n s 1. (-B (lt’Jt)))

(cav (vall(—B)))(q)
1

1
Ty

-{vex VEIQB)(Q)

~

for all o' (cf. Aumann and Maschier [1966] -~ t may be taken to be
the corresponding Blackwell strategy; "cav" is the concavification of a

function, and we use (3.2)). Thus,

(4.41) lix;‘_’inf Ec,’;’q (Bp) > (vex val,B)(q)

Let hS € Hs have positive probability under (o,t), and consider

the following strategy +t' of player 2: after hs has occurred, t' is

LT e T Y T W w Y T T a— S e w
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T(ps), where ps = ps(hs) is the vector of posterior probabilities
given hs; otherwise, t' equals T. Let T > 8, then we condition on

H , to obtain
8
E(8p) - E'(8,) = P(b )(E(B|h ) - E'(Bpln )

wvhere E' = E

51" ,p (up to stage s -~ no difference between E and
] ?

E'; afterwards-~only if hS has occurred). Apply the Banach limit L

as T+ w; since (o,t) is an equilibrium (see (L4.9)), we get by (4.1)

0 < P(h )(LIE(By[n )] - LIE" (85[0 )])

hence
§,(n) = LIE(B|n)] > LIE'(8[h )]

(since P(hs) > 0). By (L4,3) and (4.41) (with o' = o3 note that

payoffs up to s do not matter as T + =), the proof is completed. Q.E.D.

E Corollary 4.k2: 8, > (vex valaB)(pm) a.s.

X
] Proof: (4.15), (4.19) and Propositions 3.16(ii) and L4.kO0. Q.E.D.
f
3
3

. 4,8 fThe G-Process

f We have thus completed the proof of
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Proposition 4.43: Let (a,B) be the payoffs of an L-equilibrium
point (o,t) in Fm(p). Then there exists a G-process starting at

(a,B,P)-

Proof: The probability space is (Q,Hw,Pc T p); the sequence of
b

2

fields is {Hs}seNe’ and the G-process {gs}S€N2 is given by

g (fs,és,ps). All the required properties are indeed satisfied:

S
(a,8,p) by (4.13), (4.18) and (L.32); the limit g_ = (f_,6_,p,)

tn

g
1
(see (4,15), (4.19) and (4.34)) ©belongs to the set G a.s, by (L.22),

(4.36) and Corollaries 4.25, 4,39 and 4.42; and finally the "bi" property

(3.15) is given in (b4.1k4) and (4.33). Q.E.D.

5. From Martingale to Equilibrium

This section is devoted to the proof of the second half of our
result; namely, given a G-process the corresponding uniform equilibrium
point is constructed.

Let g = (a,B,p) belong to G*. Thus, we are given a probability

10/ . ® . .
space—' (Z,Z,Q), a non-decreasing sequence {Zn}n=l of finite subfields

of I, and a G-process {gn}n=l = {(f ,6_,p )}

BELNES 02 Ny with respect to

{Zn}n=l’ starting at g; i.e.,
(5-1) (flssl,pl) = (a,B,P) Q - a.s.

Without loss of generality, we will assume that Z1 is the trivial
field {Z,¢}. Let g = (f_,8_,p_ ) bea Q-a.s. limit of g, as

n #+ «; then g, € G a.s. . We will find it useful to weaken the

P P S

A

A o

wy vy

ot ]
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bi-property (3.15) to the following:

- L] - I' = . =
(5.2) Ifn+l fnﬂ "pn+l P, 0 a.s. for all n = 1,2,... .

This means that on each atom of Zn’ either fn+ is constant (and

1
thus equals fn), or P41 is constant (and equals pn); however, which
one of the two is true may differ from one atom to the other. It is
easy to see that G* does not change (to obtain (3.15) from (5.2),

insert between each Zn and Zn+l an additional field Zn+%’ and put

8ot = Bou1 if f ., =f oeand Basls = By otherwise).

5.1 Standard G-Process

To simplify the construction of the equilibrium point, we will

work with a G-process having the following additional property:

(5.3) For every atom z, of Zn there are exactly two
1 ” . .
atoms 2041 and 2041 of Zn+l contained in 2

and Q(Zﬂ+llzn) = Q(z;+llzn) =1/2

Such a G-process will be called standard.

Proposition 5.4: For every g in G¥* there exists a standard

G-process starting at g.

Proof: We will show how to "transform" any G-process into a

standard one.
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Gi G {g.} ith t to {Z.}
iven a G-process {g } _, with respect to nlp=1» We can
describe the sequence of fields as a "probability tree" as follows.
The nodes in the n-th layer are the atoms of Zn; the root (i.e., the
first layer) can be taken to be Z (by (5.1)). A (directed) arc

leads from an atom 2z = of Zn to an atom 2. of Zm if and only if

m=n+1 and zm = Zo+1 C Zn' We associate the probability
Q(zn+llzn) to this arc and define the probability of a finite path
starting at the root to be the product of the probabilities of all its
arcs. This clearly equals Q(zn), where zn is the endpoint of the
path. This probability distribution is then uniquely extended in a
standard way to all infinite paths in the tree starting at the root;
we will denote this probability measure also by Q. This completes
the description of our probability tree.

The G-process {g }oo can now be regarded as being defined

n n=1
on the nodes of the tree; we will write gn(zn) for the value of g,
on the atom z = of Zn' The properties (3.12)-(3.14) and (5.2)
defining a G-process become:
(i) gl(zl) = g.
(

(iii) The sequence {gn(zn)}:=l converges for almost all

(ii) E(g succeeds zn) = gn(zn) for all z -

n+l Zn+l)lzn+l

infinite paths, and the limit g_ belongs to G a.s.

(iv) For each node Z s either fn+l(zn+l) = fn(zn) for
all successors Z+1 of Z or pn+l(zn+l) = pn(zn)
for all successors 3z of =z

n+l n'
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In order to obtain property (5.3), we need two kinds of modi-
fications of the tree--and thus, of the G-process. First, we make the
number of {immediate) successors of each node exactly two; and second,
we make the probability of every arc precisely 1/2, !

For the former, we have two cases. If there is only one successor J

Z 41 of N we can add an additional copy of the whole subtree starting

at . ' X .
Z 41 and thus obtain two successors zn+l and zn+l (which is

identical to Zn+l) --and moreover with probability 1/2 each (from zn).

r m
Now, assume zn has more than two successors, say {z } We then

n+l r=1°

introduce additional nodes in between; e.g., at level n + 1 we will

1 . 2
have zn+l and the union of zn+1""’zn+l; from the latter, at level
X 2 ; 3 m
n+ 2 we will have zn+l and the union of zn+l""’zn+l’ and so on.

The probabilities of the new arcs will be defined as the corresponding
conditional probabilities; the value of the G-process at the new nodes,
as the conditional expectation. As an example, see Figure 2; the value
of the G-process at the new node will be
2 3

(2o * 75 &
n A+ 2

A

5 =&
A2 + A3 n+l

3
(z ) -
Clearly, all four properties (i)-(iv) continue to hold after such modi-
fications.
Next we have to make the probabilities of all arcs precisely

' " L]
1/2. Let zn+l and zn+1 be the two successors of L and let A
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Figure 2
z
n
At /a2 ;
1 2
“n+l “n+l
and A" = 1 - A' Dbe the corresponding probabilities. We want to
. ] . . . ' " . . . 1"
obtain 2041 with probability A and Z 41 with probability A
by using the probability 1/2 only. This is done as follows: we

express X' as a binary fraction

v 1
o= LS
m=12m m

with Am =0 or 1 for all m. We then consider an infinite sequence

of independent Bernoulli trials, with "success" and "failure" having

probability 1/2 each, up to the first occurrence of "success". If this

. ' " "o _ "
happens after m trials, then Z 41 results” if Am =1 and Zntl
"results" if Xm = 0. Thus, the total probability of zé+l is precisely

A' (since the first "success" occurs at the m-th trial with probability

P P T T . S
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1/2m), and that of z;+l is A". This structure now replaces the
1"

original randomization between 2z' and z in the tree. As an
n+l n+l

example, see Figure 3 (note that A' = 2/3 gives Am =1 for m odd

and Am =0 for m even). Again, the value of the G-process at a new

node is the corresponding expectation.

Figure 3

wiN
|

n+l n+l
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With probability one, either z' or z" will be reached.

n+l n+l
If we do this modification at all nodes, the properties (i)-(iv) will
not be affected (there are only countable many nodes, hence the proba-

bility of "success" not occurring in even case is still zero). Q.E.D.

Henceforth we will assume that the G-procsss we start with is

already standard.

5.2 The Sequence {en}

The limit g_ of the G-process belongs to G a.s.; by (3.9),
a corresponding point in F is thus obtained--and from it, a point

in the set AIXJ of "feasible joint actions”.

IxJ

For 8 = (e(i’j))iCI,jGJ in A and k in K, we will

denote

Ae) = T e(i,af(i,g)
i€l j&g

_ .k
and A(8) = (A (e))kGK’ similarly for B.

Proposition 5.5: There exists a AIXJ—valued random variable

0, satisfying Q - a.s.

(5.6) £, >A(e ) and p_- f_ =p_ -+ A(6_) ,

o

(5.7) 8

p

-]

« B(e_) .
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Proof: By definition, g € G implies the existence of (cw,dm) EF

satisfying f >c s P, " f =p_ *c, 2 and Gw =p, * 4. Since F

o« a0 © o
is precisely the set of (A(8),B(6)) for all 6 in AIXJ, there is
. IxJ
8, in A such that c_ = A(6_) and d_ = B(e_). The measurability

is obtained by the Measurable Selection Theorem (e.g., see Hildenbrand

[1974]1). Q.E.D.
Proposition 5.8: There exists a sequence {en}:=l of
AIXJ—valued random variables, satisfying Q - a.s. for all n in N

and (i,j) in I x J:

(5.9) 9n is Zn-measurable .

. . . 1
(5.10) lo (1,3) - E(6_(1,3)[Z2 )] <% .
(5.11) o, 6, as n->w .
(5.12) nen(i,j) is an integer

Proof: Define 8 = E(8 |2 ), then {§ ) _. forms a martingale
—_— n ! ' n n n=1
converging to 6_. Choose en to be a rational approximation to 6n
with denominators n (e.g., let eﬁ(i,J) = [ngn(i,J)]/n, where [x]
denotes the largest integer not exceeding x, then en(i,J) is either

eé(i,J) or eé(i,J) + 1/n, so as to have the sum equal 1). Q.E.D.

5.3 The Strategies o and T

We can now define the pair of strategies (o,t). In a similar

way to the so-called "Folk Theorem" for repeated games with complete
complete

o . 2 N o e o

.
“
-
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information (for a detailed proof, see the Lecture Notes of Hart
[1980, Section IV]), they are based on a master plan and punishments.
Each player follows the master plan as long as the other one does it
too (at least, as long as no deviation is detected), and uses the cor-
responding punishment otherwise.

The master plan consists of two parts. Stages t = n! , for

all n=1,2,..., are communication stages; the moves made serve as

a mean of transmitting information (from the informed to the uniformed

player), or of making a joint decision. All the other stages are payoff
periods; well determined moves (namely, pure) are used in order for both
players to accumulate the "right" payoffs. The sequence n! was chosen
since (n - 1)! is negligible relative to n! as n goes to infinity--

thus only the last periodll/

really counts. Any other sequence with the
same property could be used just as well.
The master plan is derived from the G-process. The moves at

stage t = n! correspond to the arcs from z, to 2z in the tree (see

n+l
subsection 5.1), whereas at stages (n -~ 1)! < t < n!, one "stays" at z -
Thus, a function ¢ 1is defined inductively from the set of finite
histories in the game for which no deviations occurred, to the set of
atoms of the fields {Zn} --or, equivalently, to the set of nodes in the
tree.

Let i' # i" %be two elements of I, and J' # J" two elements
of J, fixed throughout the remainder of this section. These two (pure)
moves for each player will actually be their communication alphabet

(thus, they essentially "talk" in a binary language).lg/

i
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Let t = n!, let ht be a history with no deviation from the
master plan, and let z, = c(ht) be the corresponding node in the tree.
We will define now the behaviour of each player at stage t, and also

the resulting z(h_,.). If p p, and f . =f at both nodes

n+l = n 1
"

' 3 =
Zo41 and Z 41 succeeding Zn’ the two players play arbitrarily at t = n!,

t+l

3 = [] . . .
and for all 1t and Jt’ c(ht+l) zn+l’ say. Otherwise, we distinguish
two cases:

(i) 1 3 # 1 (and thus ¢ = fn),

n+l
(ii) f # £ (and thus Py = pn)' J

In case (i), we define for each k in K

‘fpk (2! :
n+l “p+l) , if i, =1i' ,
20%(z,)
n'n
ofh, 3k)(i) = {5, (2",,) \
t’ t 1 n+l ' “n+l’ , if i, = i" o,
205z ) !
nn -
L 0 , Otherwise . f
i = | . : sk) i a {
Since pn(zn) (pn+l(zn+l) + pn+l(zn+l))/2 vy (5.3), o(ht,k) is indee !
a probability distribution over I. As for player 2, we let r(ht) be
arbitrary in this case, and then for all Jt in J, we put
sy = ot s 1 — {
C(ht’l ’Jt) z',, and C(ht,l ’Jt) 2" .

n+l -

. PP VRPNV S
—— A A A A ek
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Then
P(e(n,, ) = 2/, In)=P(c(n,, ) = 2" |n) =2
t+1 n+l' "t t+1 Zn+1 2
and
P(k = kj&,,.) = pr(g(n, )
T4l n t+177°
Proof: Assume it = i', then we have
P(i, =i'|lh ) = J P(i, =1i'|h_,k = k) * P(x = k|h )
t t gt t t
k \J
_ Pl (Zpe1)
- k : pn(zn)
k€K 2pn(z )
1 ) k 1
= = p (Zl ) = =
2k€K n+l "n+l 2
Therefore
P(k = k]ht+l) = P(k = k|ht ¢ = 1)
P(i, = i'|h ,x = k) + P(c = k|h,)
——
P(i i [ht)
k
PrailZpar)  k
k ’ pn(zn)
2p (2 )
= 2 =5 (2'..)
pn+l n+l

Similarly for it i".

Q.E.D.

k|h ) =1, (;(h )) for all k € K.

s .

N

Y Yvi
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‘ ) Thus, if the posterior probabilities for the various values of k
at stage t = n! are pﬁ, then the new posteriors generated after the
moves at time t are precisely p§+l- Case (i) therefore corresponds
to a transmission of informetion (about the value k of «) from

player 1 to player 2; we will henceforth call this signalling (by player 1).

In case (ii), £ # £ and p ., =P ; we define for all k

.
3 in K
P
o, i =1,
3 o(nk)(1,) =%, ir 1 =1,
; LO , otherwise |,
1
E s if Jt = J' s
| t(n,)(3,) =35 , if g ="
b t 'Yt 2 t ?
* 0 , otherwise |,
: and then g(h ,i',J') = ¢(h,,i",3") =27, t(h,,1",3") = ¢(h,1",9")
4 T} -4
4 TS -~
( .
[ Lemma 5.1Lk:
‘f - _ - q
’ Pleln, 1) =z In) = Pelh ) =2 |0 ,00) L
L = =
3
b ‘
] vwhere z . stands for either zﬁ+l or z;+l, i, for i' or i", -
and Jt for 3' or J".
i
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Proof: The choices of it and Jt are made independently. Q.E.D.

Thus, in case (ii) a lottery with probabilities 1/2, 1/2 is

[} 11"
performed among zn+l and zn+l' Moreover, no player has any control

over the outcome--whichever of his two possible moves he chooses, the

probabilities are the same (1/2, 1/2). Therefore, this is called

(following Aumann, Maschler and Stearns [1968]) a jointly controlled

lottery.

This completes the definition of the master plan for t = n!
(the communication stages). It corresponds to advancing one step in the

tree (from z to =z ). We next consider the payoff periods. Let

n+l

2o =t 1y

(n - 1)!), Let Bn = en(zn) in A

) (thus, we are just after z ~was determined at stage
IxJ be given by Proposition 5.8

(see (5.9)). At stages (n - 1)! + 1 through n! - 1, the players will
play en by frequencies; namely, the pair (i,J) will be played en(i,j)
of the time. Since all the denominators are n by (5.12), this can be
done in cycles of length n each. For example, assume en(i',j') = 1/n,
en(i",J") ={(n -1)/n and en(i,j) = 0 otherwise, then player 1 plays
i' once (at t =(n -1)! +1), then n -1 times i" (at
t=(n-1)!+2,...,(n -1)! + n), repeating this n-stage cycle up to
(and including) t = n! - 1; as for player 2, he chooses Jj' at
t=(n-12)+1 and J" at t=(n-21)!+2,...,(n=-1)! +n, and

so on. Clearly, we put c(ht) =z for a1l (n - 1)! < t < n!, when the

two players play as described.

Py . P S P N e 4 .

i
3
1
1
]
i
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E
P‘ We introduce the follcwing notation: for every i in I, J in
J and u, v in N with u < v, let
(5.15) ¢.(i,4) =0——— - [{tEN:u<t<v , i =1 , 3, =J}]
u v-u+l == . G 1 :
1

Thus, ¢z(i,J) is the frequency that the pair of moves (i,j) was

;‘ used at stages u,u+1,...,v. Note that it is Hv+l-measurable.

Lemma 5.16: Let t €N, (n - 1)! <t < n!, Then, for all i
in I and J§ in J,

n 1

t . : =
1901y 1 (1,90 - 0,00 < sy -

Proof: Every n stages, the frequency en is precisely obtained.
The inequality follows by ignoring the (at most) n - 1 stages following

the last complete n cycle. Q.E.D.

Finally, we have to define the punishments--what each player does

after detecting a deviation from the master plan by the other player.

Two results are needed from the theory of zero-sum games (see Propositions

|
-

S 3.5 and 3.6; the more precise statements here are needed to obtain a .

uniform equilibrium).

. Proposition 5.17: Assume the vector y in R® satisfies (3.3). (
Then player 2 has a strategy T = t(y) such that

B (ap) <y

S
o', /T

for all strategies o' of player 1, all k in K and all T in N.

L0 aen am can n e s . e ey o
F N
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Proof: The precise bound is obtained from the proof of the
approachability theorem (cf. Blackwell [1956], or Mertens and Zamir

(1980, Ch. I]). Q.E.D.

Proposition 5.18: For every q in Ak, player 1 has a strategy

o = o(q) such that

E (B

3 ) < (vex valQB)(q)
0,1',q

T

for all strategies 11' of player 2 and all T in N.

Proof: The above inequality actually holds with BK(it,jt) instead

of BT’ for all t (e.g., see Mertens and Zamir [1980, Thoerem 3.15]). Q.E.D.

The definition of o and T can now be completed. Assume first
that player 1 deviated from the master plan, either by playing it #£iv,i"
at some t = n! or by not playing the "right" it at some (n - 1)! <t < n!.
Let D be the stage at which this deviation of player 1 occurred.

Thus, all moves in hD are according to the master plan, and iD is the
deviation move (which is observed by player 2 before stage D + 1). Let

z = c(hD) be the corresponding node just before the deviation; the
strategy T prescribes then that after hD+l (i.e., from stage D + 1 on),
player 2 should use T(y) with y = fn(zn) (See Proposition 5.17, and note
that (3.3) is satisfied in view of Proposition 3.16(i)).

Next, assume player 2 deviated from the master plan at stage D
(and was detected). From stage D + 1 on, player 1 then uses o(q)

with q = pn(zn) as defined in Proposition 5.18 (again, z = c(hD)).

This ends the definition of the pair of strategies o and T=.

« L MMM .. i

|
1
i
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! ' 5.4 Payoffs and Probabilities for (o.t) d

In this subsection we assume that both players use o and T,
respectively. Thus, only the master plan matters; there are no derivations

and no punishments. !
We first analyze the payoffs. Let TEN, (n-1)! < T< nl,
end let hy, in H;, be a history possible under (g,t); i.e.,

PB,T,P(hT) > 0. We will write @  for en(C(hT)) --the value of @

APPSRy TR W W R

on the atom ;(hT) of Zn; similarly for the other random variables

defined on Z. Recalling definition (5.15) of the frequencies ¢, we

have
Proposition 5.19: Let TEN, (n - 1)! < T < n!, by, € H,, with
(h,) > 0. Then, for all i in I and § in J,
g,T,p T

6771 1,0) - [ - B=Ay (1,5) + B=LLy (5,57 < 2

Proof: If k/n > 1, there is nothing to prove (both ¢ and the

expression [...] 1lie in the interval [0,1]). Let n > 5, then

- T-1 _(n -1t (n-1)t (T -1)-(n-3)tT-1
; ¢ = rt-1 % T < 1 ®(n-1)141

The frequency 6 ., is "played" at stages (n - 2)! <t < (n - 1)!,

therefore

~v—w
PR S

v

(n-1)! (n -2)1 +1 ;3
lo;" 777 (1,9) - o (1,3 < __TE_:lITT_— )

MM AN S5 aln g v
t g
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(the difference is due to 1 < t < (n-2)! and t = (n - 1)!; in

total, (n - 2)! + 1 stages; note that en requires a cycle of )

-1
length n - 1, which divides (n - 1)!). Together with the inequality
in Lemma 5.16 for the second term, we obtain an overall difference of i

at most

(n-2)t+1+n-1_(n-2)t+n L 4
T -1 = (n-1)t n °’
the last inequality being easily checked (for n > 5). Q.E.D.

This result shows that the frequencies obtained are close to
those given by the sequence {en} . The next two corollaries will be

needed in the sequel; we will write M =M « |I] - |J].

Corollary 5.20: For all k in K,
k k  (n-1)1 k 5M
qpy STt Tr o3 (fﬁ-l -t

Proof: By Proposition 5.19,
» k _ ok, T-1 k )k LM
o oy = A ) < AAT(E,) + AAT(e ) + T
y.
4 with A' = (n - 1)t/(T - = - A .
h p=(n-DU/(T-1) ana a,=1-2
P'.
E : Recalling (5.10) gives
' @
F k k M
- ) - .
| AT(e ) < E(AT(6,)]Z ) + 1
P. Al
s
)
!
)
T
W—A—_—M—_—j
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By (5.6) Ak(aw) < fﬁ, hence
o) < e T
Similarly for en_l, and we obtain
AT gt eag ) o B

from which the result follows. Q.E.D.

K

2

Corollary 5.21: For all q in A

q B(¢§-l) < max {q + B(6 ),q- B(6__ )} + l‘nﬂ

Proof: TImmediate from Proposition 5.19. Q.E.D.
Next we deal with the probability Pc and the induced
9 9
posteriors.

Proposition 5.22: Let n €N, z an atom of Zn and T € N,

(n -1)! < T < n!. Then:

(5.23) B, (&) =z) = Qlz)

(5.24) Pa,T,p(K = k(hT) = pﬁ(zn) for all hy in Hy with z(hg) =z

and all k in K.

Proof: Induction on n. For n = 1, there is only one history hl

(the "empty" history), thus (5.23) is just 1 =1 and (5.24) is p = P,

(recall (5.1)). The induction now proceeds as follows.

iaias

a9

P

R Y YRR AR
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At stages (n - 1)! <t < n! (payoff stages), neither ¢ nor
any probabilities change (both players make pure choices). At t = n!, the

- 1 "
+l) 2'y1 OF 2.,  are 1/2 each by Lemmata 5.13

and 5.14, thus equal to Q(Zé+llzn) = Q(z;+l]zn) by (5.3) (recall that

probabilities of g(ht

our G-process is now assumed standard). As for the posterior probabilities
(of «k = k), they change only when there is signalling (t = n! and case

(i))--and we use again Lemma 5.13. Q.E.D.

We will now show that (o,T) result in the payoffs (a,B).
We need first the following resuit (E§ T is the conditional expectation
>

given « = k, and fi = fi(C(hT)))'

Proposition 5.25: Let TE€N, (n- 1)! < T< n! and k €K.

1A

Then
B (5 = &F
g,T n
Proof: The probability distribution of z = ;(hT) induced
by Pc T.p is precisely Q (by (5.23)); therefore
b ] b ]
B, o o(Te(5(hy))) = By (1)
where E(Z) denotes expectation on the space 2 (with respect to Q;
note that E and ES are on ). Since {fk} is a martingale
»T P 0,1 n'n
and f, =a by (5.1), the above equals a¥,

v memmalcata '
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We claim that the same expectation is obtained when using Pg
ST

instead of P p° Indeed, the induced probability distributions over
L

the tree differ only in case of signalling (in a jointly controlled

lottery, it is 1/2 in both cases by Lemma 5.14); however, in that case

fm+l = fm’ so that the expectation is the same. Q.E.D.

Remark: Actually, the conditional expectations (with respect
to P and Pk) are also the same--thus, {fﬁ}n is a martingale also
with respect to the probability distribution induced by Pk. Moreover,
any strategy o' of player 1 that differs from ¢ only in the proba-
bilities used for signalling has this property (as we shall see in the

next subsection).

Proposition 5.26: For all k in K

lim 5 (a5) = &f

Toreo o, T
%i: Eo,r,p(BT) =g

Proof: We start with player 2. Let (n - 1)! < T < nt;

conditioning on HT’ we obtain (E = EO,T,P):

E(8y_, |ny) = ké{pﬁBk(‘»f’l) :

with p: = pﬁ(c(hT)) as usual. By Proposition 5.19,

-t e — s

PR Y-

.

b

Vodm.”




LKA N

. LR A . o Mt ve i a0
0 T -..i A

-68-~
|k, T-1 k 'k 4
B (6777) - [A B (6, ) + Ao <4
where A% = (n-1)!/(T - 1) eand Ap =1 - Ap. As in the proof of
Proposition 5.25, the distribution of z_ = g(h_,) induced by P =P
n T 0,T,P

is Q (see (5.23)). Therefore,

|B(8y_1) - By (e« 0BG ) + 1856 1| < W .

As n > =, 6 + 8, end 6 18, Q-a.s. by (5.11); also P, > P>

hence (AT,A' >0, Ap + Ay = 1 and everything is bounded):

1
T T

lim E(B, .) = E,,\(p_ - B(8 ))
Tiw -1 (2) P ®

By (5.7), this is E.,y(8,) =6, =8 (recall (5.1)).

For player 1, the same argument gives (aT

lim E( ) = E (p. . A(em)) =E, (p - fw) =p, «f. =p-+oa
Tom | T-1 (2) " Poo (2) P 11

(see (5.6), Proposition 3.18 and (5.1)). If we condition on <, we have

k k
Blag_,) = ] p"E%ay )
k€K
where Ek = Eg T = Eo T p(. ,x = k). As in the proof of Corollary 5.20,
’ ] b ]
we obtain

was defined in (4.16)):




By Proposition 5.25

K, ik, 5M
8.+AT8-+n’

Ek(a.k

pop) $A

T

hence

lim sup Ek(a;) < ok ,
T

which together with

lim pkEk(ag) = ) praX
T kEK k€KX

and pk > 0 for all k completes the proof. Q.E.D.

Remark: The above proof actually shows that, if both players
use (o0,7), then the average payoffs converge a.s. to the corresponding
6, = 1im 6 _, where 6 =6 (z(n._.)). Therefore, one can interchange

<o n n n T

the order of limit as T + =) and expectation (and there is no need for

Banach limits!).

At this point we can show intuitively that (o,t) is indeed an
equilibrium point (at least--in the weak sense (2.7)-(2.8); the compli
cated inequalities in the next two subsections are in part due to the

fact that we want to prove the uniform property (2.11)-(2.12)).
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f‘ Consider player 1, and fix k in K (the true game). As we
fj noted in the last Remark, the average payoff to player 1 for infinite

histories without deviation from the master plan is the corresponding
Ak(em), which is < fﬁ. If the game has proceeded up to a point
corresponding to the node z, in the tree, his expected payoff will

thus be at most Ek(fﬁlzn)==fi (see Proposition 5.25 and the Remark
following it). This will also be the expected payoff if player 1 decides
to deviate now--by Proposition 5.17. This shows that he cannot gain by
detectable deviations. How about undetected ones? He can only make
those at communication stages (at payoff stages, the moves are pure).

If a jointly controlled lottery is performed, he cannot influence the

outcome--the two alternatives have probability 1/2 each no matter what

player 1 chooses (since player 2 randomizes truly according to T).

= fﬁ, thus fk

If he is in a signalling case, then fk N+l

n+l is constant,

and any "signal" he uses gives him the same expectation. Therefore

undetectable deviations do not help either, and ¢ is optimal gainst .
Consider now player 2. Since player 1 uses o, the posterior

L probabilities are given by P,- Therefore the expected average payoff

§ of player 2 at a node zn --if he does not deviate--is precisely

P, E(B(em)lzn), vhich for n large enough is close to E(p_ ° B(em)lzn)

- = E(Gwlzn) = Gn (since P, * p,). If he makes a detectable deviation,

he will get thereafter at most (vex valQB)(pn) < Sn --thus he cannot

gain by doing so. The only other possible change in strategy is in a
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Jointly controlled lottery; again, if player 1 uses o, player 2 cannot
influence the resulting probabilities. Thus T is a best response

against o.

5.5 o 1is Optimal Against =

We will show here that o 1is a best response of player 1 against
the strategy Tt of player 2. Moreover, the uniform condition (2.11)
will be proved.

Thus, let € > 0; we have to find To = To(e) such that for all

T > To and all g’

for all k in K (see (2.13) and Proposition 5.26).

As usual, P, P%, E and EX refer to o,T,p, whereas P', P'k,
E' and E'k to o',1,p.

If both players use (o0,7), there are no deviations from the
master plan, and [ is defined for all possible histories (i.e., those
with positive P). However, when we consider alternative strategies, it
will be useful to define ¢ for all histories (i.e., even those that
are not possible under (o,1)); n(ht) will be t of the part of h,
up to the first stage a (detectable) deviation occurred. Thus, we

define

(5.27) D=3sup {t EN : P(ht) > 0} .
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D is a random variable on Q with values in N U {»}, and is H - . i
measurable. For every infinite history, D is the stage of the first

detectable deviation, if any; D = » otherwise. Note that P(ht) > 0 ;
just means that the sequence of moves used by both players at stages i
1,2,...,t =1 is possible under (o,t); more precisely, that h_ is

t

possible under (o,tr) when k =k for some k in K.

Let DAt = min {D,t}, then we define for all t in N and hg
in H

(5.28) g(h,) = g(hy,. )

The right-hand side was given in subsection 5.3; we thus extend the
definition of ¢ to all histories.

Next, we "translate" the G-process to the space @, as follows:
(5.29) g (b)) =g (2)

where z = c(ht) (and thus, by (5.28), we have (m - 1)! < DAt < m!).

N PR A . K = .
), with £, = (flt{)REK in R", 6, in R and

-

= (£, +8, .0

K

As usual, gt Lo

in A

Proposition 5.30: Let k € K. The sequence {fi}:=l is a .

martingale on (Q,Hm,P'k) with respect to {Ht}:-l’ Moreover, for all

t in N, ht in Ht and all i, in I,

K, ° L
(5.31) B (f:+l|ht,1t) = ft '

P' -a.s.

P T S AL P 3 - P
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This proposition is a crucial assertion in our proof. (5.31)
means that the strategies ¢ and Tt have been constructed in such a

way that player 1 is indifferent among his various choices of it at

all histories ht --and this includes both detectable and undetectable

deviations from o (see also Proposition 5.25 and the subsequent Remark).

Proof: The measurability of fﬁ with respect to Ht is

immediate by definition. As for the martingale property, namely

AR C N

t+llht) = fi, it will follow from (5.31) (which is stronger, since

it holds for all i, in I, not only in the average).
We now prove (5.31). It is easy to see by (5.29) that
f:+l # fi only wvhen DAt = m! and DA(t + 1) =m! + 1, and thus
D>t +1 and t=ml. Let 2z = ;(ht); since fﬁfl # fi, case (ii)--
a jointly controlled lottery--occurs at Z But it must be either
i' or i" (otherwise, player 1 deviated and D = t); in both instances,
. ' "
;(ht+l) is zp.. or zn. with probability 1/2 each by Lemma 5.1k,

and (5.31) reduces to

*z ) = 228 ) + Lk

L 111
m wl (ol 2 Toe1 (Zpe1)

which holds by (5.3). Q.E.D.

For each T in N, we define HDAT to be the finite field

generated by all events of the formlé/

{h, and DAT > t}

t
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-‘ for t in N, t <T and b, in H,. This is the field of events

prior to the first detectable deviation. Note that D + 1 (but not P

- D) is a stopping time relative to the sequence {Ht}:=l’ and so is ‘

! (D + 1)A(T + 1) = (DAT) + 1. The field of events strictly before

(DAT) + 1 is precisely HDAT' It is easy to see that HDAT - HT,

and an atom in HDAT’ which we denote by h

DAT® is of the form J

]
hDAT = {h,c and DAT = t}

for some t in N, t < T and ht in Ht'
From now on, we fix a strategy ¢' of player 1, an element k
in K, and T in N. To shorten notation, we will write D for DAT

and HD for HDAT'

Consider Emfag_l); we separate it into three parts: before D,
at D, and after D (note that only the first one is always non-empty).

Thus,

kK _D-1k 1k,
epy S 7 -1t ToT A (pedp)
T-1
1 K
+ 1OA(i,3) .
: T-lepnn 7°

-l
RIPPY VRIS . vFIPHaTan

The middle term is at most M/(T - 1), hence

& q
; |
- kK kD -1 k M h
[ (5.32) B (ap_y) < BV (7=Fep ) * v
T-1
kK, 1 K,
ET( AT(1,,3.)) .
T‘1t=zn+1 v ‘

PV SNSRI b R
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For the first term, we have

Lemma 5.33:

L ol

kD -1k kD -17 SM + 2M
BT Tey ) < BNGTTR) ¢ S

Proof: We use Corollary 5.20:

kD -1k kD -1 kD -1 (m - 1)!
(5.38) B f@=Zay ) < BRETT) « BREE BaLi K )
+ 5ME'k(¥—§{%%O ’

where fi and fﬁ-l are evaluated at the corresponding ;(hD) (note
that m here is a random variable, (m - 1)! < D < m!).

By definitions (5.28) and (5.29), the first term is precisely

k,D -1 %k

)
BT o)
The second term is separated into two parts. If D < (n - 1)!, then

m<n -1, hence

(m-l)!<(n-2)!= 1
T-1 = (n-1)! n-1 °

giving a bound of 2M/{(n - 1). Next, we claim that

e, -

X(D>(n - 1)1}) =0 >
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Kﬂ where X{ .} denotes the indicator function of the event {...}.
Let us=(n-1)!, then D> u if and only if P(hu+l) > 0 (see the
definition (5.27) of D). But player 2 does not deviate from T,

!E therefore we have P'k—a.s.: P(h ,.) > 0 if and only if P(hu,iu) > 0.

u+l

Conditioning on hu and iu gives

k k, k .
E" B - tn i)

u’ u

(32— . .
T -1 {P(hu,lu)>o}

]

By (5.29), ff | = 7% ana £ = I | recalling (5.31) shows that the

whole expression is zero.

The last term in (5.3L4) is also separated into two: for

D< (n-2)t,

[w}
)
-

=3
1
‘._l
L]
=N
A
<]
1
'_l
*
ot
1A
=]
1
}_J
~

for D> {(n-2)!,m>n-1 and

- b-1,1_.,.,_2

T-1 m- n -1

fo

£_ This gives a bound of 5M/(n - 1); together with 2M/(n - 1)

;' from the second term, the proof is completed. Q.E.D.
;‘ For the last term in (5.32), we condition on HD.

4

3 Lemma 5.35:

E-" tel g -D-13 M '
O E'k(-__Til Y oA (1,53, )Hp) fTT-llf; + —=2

3 t=D+1 ) vT - 1

£
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Proof: Given h, player 2 uses the punishment strategy T(y)

DR B W LRI N

starting at t =D + 1, with y = fm(c(hD)) =7 (see (5.29)). The

T
inequality is obtained from Proposition 5.17, applied to '
T-1 .
1 2 k,.
O AT(i ,3,) . Q.E.D. 1
T-D lt=D+1 t2Yt 4

Finally, we have our result.

Proposition 5.36: For every € > 0 there exists T, 2 To(e)

such that for all T > To and all o'

E'k(al,;) < aX + ¢
for all k in K.

Proof: Combining the inequalities in Lemmata 5.33 and 5.35,

we obtain from (5.32)

- E(ap ) s ERGEE ) o A, B2 A, 2

;: T-1 T -1 n-1 S

4

.

: The first term differs from E'k(fg) = f? = ok (see Proposition 5.30 f
- and (5.1)) by at most another M/(T - 1). All additional terms are i
3 ‘
.‘ independent of o', and converge to zero as T + » (hence, n+ » too). Q.E.D. :
!

i. 5.6 t is Optimal Against o

&3 . Here we prove that t 1is a best response of player 2 against player 1 !
. using o; as in subsection 5.5, we obtain the uniform pr~rerty (2.12):

- i
- .
[V N

———vy
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Given € > 0, we show that there is T, = To(e) such that for all
T > To and all <t'

Ec,T',p(BT) i B + €

(recall Proposition 5.26). We will use the notations E' and P' for
o,t',p.

In subsection 5.5 the time of the first detectable deviation was
defined (see (5.27)); also, the G-process was translated to the space of
histories by (5.28) and (5.29). Thus, 3t(ht) is the value of the sequence

{Gm(zm)}m just before the deviation (if any, up to stage t). We have

Proposition 5.37: The sequence {Gt}:=l is a martingale on

. o0
(2,H_,P') with respect to {Ht}t=l'

Proof: Similar to that of Prouposition 5.30. Again, we actually
prove a stronger assertion (but which will not be needed in the sequel),

namely

~

E'(8y4pIng034) = 8¢

P'-a.s., for all t in N, ht in H, and Jt in J. The only case

t

to check is t =m! and D> t + 1. The probabilities of zé+l and

" are 1/2 each no matter what player 2 chooses at stage t; this is

2
m+1

so by definition of o 1in case (i) (signalling), and by Lemma 5.1k in
case (11) (a jJointly controlled lottery; since D > t + 1, Jt = j' or

J" then). Q.E.D.

o o N . - S S e e e e oa m A A A am B omaa - . a - P
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An important property of o 1is that player 2 cannot increase
the probability of reaching any node 2~ in the tree (he may be able

to decrease it by making detectable deviations in previous stages).

Proposition 5.38: Let t €N, (n-1)! <t < n!, and let 2z

be an atom of Zn‘ Then

P'(z(ht) =z )< Q(zn) .

Proof: Induction on n. For n =1 we clearly have equality.

Let u=(n - 1)!, then definition (5.28) gives

P%d%) gQ=P%dh )=z and D> u+1)

u+l n

P'(ﬁ(hu+l) = zn‘t(hu) =z and D> u+ 1)

-1

*P(D2u+1fe(h) =2z ) Pclh) =2 )

n-1 n-1

The same argument as in the proof of Proposition 5.37 shows that the
first factor is 1/2 (since D > u + 1, in both cases (i) and (ii) the
probabilities do not change); the second is at most 1, and the third at
most Q(zn

-l) by induction. This completes the proof, since

Az ) = (1/2) « lz ;) by (5.3). Q.E.D.

Let 1' be a fixed strategy of player 2, and fix T in N,
(n - 1)! <T<n!. As in subsection 5.5, we divide E'(BT_l) into three

parts, as follows (D stands for DAT):
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D-1 M

L L
(5.39) B'(8, ) s B'(2TLg )+
T-1
1 K
+E* ( o BY(i,,4,)) .
T - 1t=D+l t°Y¢t
In the first term we condition on HD’ to obtain

D -1
7-1bp1) =

(5.%0) E'( E'(

D-1 o P
rop L = i) - 26

Lemma 5.41: Let h, be an atom of HD’ and (m - 1)! < D < m!.

Then
k
P'(x = k|ny) = pr(c(np))

for all k in K.

Proof: Given hD’ player 1 did not detect any deviations by
player 2 up to D. Therefore he played according to the master plan,

and the result follows by (5.24). Q.E.D.

Lemma 5.42: For every € > 0 there exists T, = Tl(e) inde~

pendent of t1' such that

D -1 D-1*%
[ ] L I . .
BT T8py) <E(GTTO) +e

Proof: On the space 27, we define for all n in N

n, = max {pn . B(Bn),pn «B(6_ )} .

n-1

-y - - Y e T S R A

. .
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Clearly n, is Zn-measurable, and n, > Gm Q-a.s. as n »> » (indeed:
P,* P, 08 >0, by (511), end §_ =p_ - BB ) by (57)). We also

have Gn > Gw as n + », therefore

iif E(Z)(|nn - Gnl) =0
(everything is bounded by M). Thus, for every e > O there is
n, = n_ (e) large enough such that
E
(

Z)(lnn - Gnl) < e

for all n > nl.

Using Lemma 5.41 and then Corollary 5.21 (with q = pm), we

obtain by (5.40}

D-1 D=1 gpe(B -1 1
E(T—T8o) B (TTTny,) YME (T )

where (m - 1)! <D < m!, and n, = nm(c(hD)). As in the proof of
Lemma 5.33, the last term is no more than UM/(n - 1), vhich can
be made arbitrarily small for large enough T (independent of <t').

Therefore, it remains to bound

D-1
] s |)

Inm - m

E'(

(recall that GT = Gm(c(hD))). We separate into three parts: m<n - 2,

m=n-1, and m =n, The first one is bounded by 2M/(n - 1) (since

D

1A

(n - 2)1). Let 2 be an atom of Zn’ then

P

el AL e Y TR

ad N .
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Pz(ny) =z ) = P'(c(ng) =2z ) < alz)

by (5.28) and Proposition 5.38. This implies that

D-1
T - llnm - 6mI ) X{m=n}) < E(z)(lnn - Gnl)

E'(

Similarly, let =z be an atom of 7 then

n-1 n-1’

P'(z(np) =2z ;) =P'(z(n ) =z . and D<nt) <z ;)

and

D-1
T-1

E'( Inm - Gml : X{m=n—l}) z E(Z)(Inn—l - Gn-ll)

If n> nl(e), both expectations are bounded by e, which completes the

proof. Q.E.D.
For the last term in (5.39), we again condition on Hy.

Lemma 5.L43:

T-l -
1 K T . D -1

1 ————e sttt

E' 7T lt-%+1B (it’Jt)lHD) ST o1 S

Proof: By Lemma 5.41, the posteriors at h are given by

D
P, = pm(c(hD)). From stage D + 1 on, player 1 uses his punishment
strategy; by Proposition 5.18, the expression we consider is thus no

more than

J
!
i
1
i
:
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T-D-1

T-D-1
T-1 §

(vex val2B)(pm) < w31 n

1]

(we used Proposition 3.16 (ii)). But S Gm(c(hD)), completing the

proof. Q.E.D.

Proposition 5.44: For every € > O there exists To = To(e)

such that for all T > To and all '
Ef(eT) <B+e .

Proof: Similarly to Proposition 5.36, we combine (5.39),

Lemmata 5.42 and 5.43, Proposition 5.37, and (5.1). Q.E.D.
We have completed the proof of the second half of our main result.

Proposition 5.45: Let (a,B,p) € G*. Then there exists a

uniform equilibrium point (o,t) in T_(p) with payoffs (a,8).

Proof: Propositions 5.26, 5.36 and 5.4, Q.E.D.

6. Enforceable Joint Plans

Let us consider now equilibria that require finite sequences of

communications. For every positive integer m, let

m [
G = {g € G*: there exists a G-process {gn}n=l starting

at g such that g =g for all n> m} .

o . Py ~ ' . . R i I i - I I I 2 i I | R . .
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;! Thus, C-m corresponds to those G-processes for which the limit g, !
R 1
- is reached already at stage m. Clearly, G1 = G (recall (3.12)). :
b y
9 Therefore, the first such set to study is G2. )
‘! The following is easily obtained: A point g = (a,B,p) belongs i
5 |

to G if and only if g can be expressed as a convex combination of )

points in G, all of which have the same a coordinate or the same p ‘

coordinate. Thus, there is a finite set S such that g = J p(s)g(s),
s€s

with p = (p(s))SEB in AS, g(s) = (a(s),B(s),p(s)) in G for all s

3 in S, and either a{(s) =a for all s or p(s) =p for all s.

b
E} The latter case (p(s) = p for all s) leads to no additional

points outside G; this is due to the fact that, for a fixed p, the

set of (a,B) such that (a,8,p) belongs to G is a convex set

(indeed, all conditions (3.3), (3.4), (3.9)-(3.11) are invariant under

convex combinations--again, when p 1is constant).

Therefore, the only interesting case is a{(s) = a for all s

(eand p(s) not constant). This generates points in G2 that do not
P

necessarily belong to G, and that correspond to equilibria with one

communication onlylg/ (signalling), followed by payoff accumulation

henceforth (using frequencies). Following Aumann, Maschler and Stearns

;' [1968], this is called an enforceable loint plan.li/

An interesting question is: how many different signals are needed?

Since the only information player 1 has (that player 2 has not) is the

value of k, it seems reasonable that no more than |K| signals should

be required. Namely, the most player 1 can transmit to player 2 is
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Just «k, which has IKI possible values. However, it turns out that
this is not the case, and the correct bound is |K| + 1 rather than
IKI; i.e., no more than IKI + 1 signals are needed, and there are
examples which do indeed require IKI + 1.

For every integer £, let G2(2) be the set of all g = (a,B,p)

in 62 such that

9 %
g= Jo(s)gls) , Jo(s)=1 , g(s)=_(a,8(s),p(s)) €C
s=1 s=1

and p(s) > 0 for all s = 1,2,...,2

Proposition 6.1:

G2 = Gz(!K! +1) .

Proof: For fixed a, the vector (8,p) 1lies in R x AK, which
is a lKl-dimensional Euclidean space; we now apply Carstheodory's

Theorem. Q.E.D.

We will next present an example where G2 # G2(|K|), showing

that |K| + 1 1is the best bound.

Example 6.2: Let K = {1,2}, I = {1,2}, J = {1,2,3,4,5,6,7}.

The two games are (player 1 chooses the row, player 2 the column):
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Mo 2 3 4 5 6 7
k=1 1 0!0 09)"‘ o,"s '13’9 -13-3 "1,3 -1,6
2 090 09)"’ 0"'5 —13-9 -l,-3 "1,3 -1,6
N 1 2 3 4 5 6 T
k=2 1 0,0 0,-5 0,k -1,6 | -1,3 | -1,-3 | -1,-9
2 090 0:'5 Oal‘ -196 -1,3 ’19"3 ‘19-9

It is easy to see that (vallA)(p)= -1 for all p in AK, and

2 1
(vex valQB)(p) = (va12B)(p) = max {-9p® + 6p°, -3Pl +3p, 3p - 3P2,
6pl - 9p2}, vhere p = (pl,pz). Therefore, the intersection of G with

the hyperplane a = (0,0) consists of exactly three points:

g(1) = ((0,0), 0, (3,3))
- 21
g(2) = ((0,0), 1, (5,3))
- L2
g(3) = (0,00, 1, (1,3)

e

where we write as usual g = ((al,ae),B,(pl,pz)); these three points
correspond to J =1, J =2 and J = 3, respectively (i does not
matter). Indeed, since a = (0,0), J =k, 5,6 and T are not possible;
individual rationality for player 2 (nemely (3.4)) then implies that
J =1 can be used only at p = (1/2,1/2), J =2 only at p = (2/3,1/3),

and J =3 only st p = (1/3,2/3).

Y U

Y TSRO o,
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Therefore G2 will contain the convex hull of g(1), g(2)
and g(3) --however, no interior point of this triangle can be expressed

using only two of its vertices.

It is easily seen in this example that an additional condition

may reduce the number of signals to 2 = IKI. In general, we have

Proposition 6.3: Let (a,B,p) € ¢2. Then there exists B' in

R such that 8' > B and (a,8',p) € G2(|K])
Proof: By Proposition 6.3,

2 %
g =(a,8,p) = Jp(s)gls) , Jo(s)=1 ,
s=1 s=1

g(s) =(a,B(s), p(s)) €6 and p(s) >0 for all s =1,2,...,8, where
2 < |K| +1. Assume & = |K| + 1, and consider the % vectors
{(P(s),l)}§=l in AKX x B, They must be linearly dependent; let

L
{w(s)}§=l be not all zero and such that ) w(s)p(s) = 0 and

=1
L s L
I m(s) = 0. Without loss of generality, we assume that I n(s)B(s) >0
s=1 s=1 -

(otherwise, replace all w(s) by -w(s)). Let n = min {-p(s)/n(s):
n(s) > 0}, and put p'(s) = p(s) + nm(s). Then p'(s) > 0 for all

s =1,2,...,4 and at least one p'(s) is zero; moreover,

L L L
Yp'(s) =1, § p'(s)p(s) =p and B'= Y o'(s)B(s) > B. Q.E.D.
s=1 s=1 s=1

The following is now immediate.

PRI SR S UNULEP U W W W
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.. .16/
Corollary 6.5: Let (a,B) be the payoffs of a Pareto optimal—
enforceable joint plan equilibrium in T_(p). Then no more than |K]|

signals are needed; namely, (a,B,p) € Gz(lKI).

o o ML 4 aad asmlola SRR ;2 2 T T

What about Gm for larger values of m? It is easy to see that
each Gm is obtained from the previous Gm-'l by taking convex combi-
nations--with either & fixed (when m 1is even) or p fixed (when m

is odd). New points are usually obtained; Aumann, Maschler and Stearns

[1968] provide examples where G3 # G2 and Gh # G3. It is probably
not difficult to use the same ideas in order to generate examples where
Gt # ™1 for arbitrary m.

An open question still remains, Is G¥* the union of all the
Gm? If one ignores the game structure, and just considers the notioms
of bi-convexification (G") and bi-mertingale (G*), the answer is
negative: G* may contain points that do not belong to any G (and
it is not Just a matter of closure either-- G* may be a very different

set). For details on these problems, the reader is referred to the

forthcoming paper of R. J. Aumann and the author.
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Footnotes

}! The standard example is the well known children's way of choosing
among two alternatives with equal probability ("two-finger
Morra"): they each show, simultaneously, either one or two
fingers. If they match (i.e., both show the same number), the
first alternative is chosen; if not, the second one. If both
choose the number of fingers at random (i.e., with probabilities
1/2, 1/2), the two alternatives each have probability 1/2, even
when one of the participants uses any other strategy! (This is
better than tossing a coin, which may be counterfeit - a fact

known to one but not to the other). This idea of jointly

Tontrvlled randomizations is due to Aumann, Maschler and Stearns
1968] .

3! In this case, one may duplicat the single strategy of a player:
this enables him to make choices, which do not affect the payoffs,
but serve as "signals".

3/ The set H;, being an empty product, is defined to consist of one
element only.

E! A finite field means a field with finitely many elements; such a
field is equivalent to a finite partition of the space (the atoms
of the field being the elements of the partition).

3/ The statement is to be understood as: [a_...] if and only if
[an... for all n); similarly in (ii).

8/ I.e., with §_ or 68 for B, and p, or p, for p in (3.4).

1! Henceforth we will always use t for integers in N, and s for
half-integers in N,.

§/ We list here only those we will need in our proofs; the existence
of such L 1s guaranteed by the Hahn-Banach Theorem (see the
reference above).

9/ .., E(E(Z )IF) <E(Z |F) .

n+1lFﬁ+1

39/ 2 is a set, Z a o-field on Z, and Q a probability measure
on .

11/ By "period" we will usually mean the stages from (n-1)! to n!

for some n.
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If there are more than two strategies, the commnications may be
"shortened" (i.e., less stages). This is not important in our
model, since payoffs in finitely many periods do not matter, but
will be so if a fixed discount rate is assumed.

This is the set of infinite histories which coincide with hy wup
to time t, and for which D AT is no less than t.

If the G-process is standard (cf. subsection S5.1), this would
require one stage in the game; in general, this may take longer
(e.g., if player 1 uses only i' and i" as in subsection 5.3,
then at least log,% stages are needed, where £ is the number of
different values of 32).

They only define "joint plans" - and then find conditions under
vhich these can be "enforced" by equilibria. As Sorin [1981)
pointed out, one of their conditions should be slightly
strengthened - and then it corresponds to our characterization
of G-.

I.e., such that there is no other enforceable joint plan
equilibrium in T _(p) with payoffs (a',B') satisfying
(a',8') > (a,B) and (a',8') # (a,8).
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